Effects of Melatonin on Prenatal Dexamethasone-Induced Epigenetic Alterations in Hippocampal Morphology and Reelin and Glutamic Acid Decarboxylase 67 Levels

Author:

Lui Chun-Chung,Hsu Mei-Hsin,Kuo Ho-Chang,Chen Chih-Cheng,Sheen Jiunn-Ming,Yu Hong-Ren,Tiao Mao-Meng,Tain You-Lin,Chang Kow-Aung,Huang Li-Tung

Abstract

Prenatal glucocorticoid exposure causes brain damage in adult offspring; however, the underlying mechanisms remain unclear. Melatonin has been shown to have beneficial effects in compromised pregnancies. Pregnant Sprague-Dawley rats were administered vehicle (VEH) or dexamethasone between gestation days 14 and 21. The programming effects of prenatal dexamethasone exposure on the brain were assessed at postnatal days (PND) 7, 42, and ∼120. Melatonin was administered from PND21 to the rats exposed to dexamethasone, and the outcome was assessed at ∼PND120. In total, there were four groups: VEH, vehicle plus melatonin (VEHM), prenatal dexamethasone-exposure (DEX), and prenatal dexamethasone exposure plus melatonin (DEXM). Spatial memory, gross hippocampal morphology, and hippocampal biochemistry were examined. Spatial memory assessed by the Morris water maze showed no significant differences among the four groups. Brain magnetic resonance imaging showed that all rats with prenatal dexamethasone exposure (DEX + DEXM) exhibited increased T2-weighted signals in the hippocampus. There were no significant differences in the levels of mRNA expression of hippocampal reln, which encodes reelin, and GAD1, which encodes glutamic acid decarboxylase 67, at PND7. At both PND42 and ∼PND120, reln and GAD1 mRNA expression levels were decreased. At ∼PND120, melatonin restored the reduced levels of hippocampal reln and GAD1 mRNA expression in the DEXM group. In addition, melatonin restored the reln mRNA expression levels by (1) reducing DNA methyltransferase 1 (DNMT1) mRNA expression and (2) reducing the binding of DNMT1 and the methyl-CpG binding protein 2 (MeCP2) to the reln promoter. The present study showed that prenatal dexamethasone exposure induced gross alterations in hippocampal morphology and reduced the levels of hippocampal mRNA expression of reln and GAD1. Spatial memory was unimpaired. Thus, melatonin had a beneficial effect in restoring hippocampal reln mRNA expression by reducing DNMT1 and MeCP2 binding to the reln promoter.

Publisher

S. Karger AG

Subject

Developmental Neuroscience,Neurology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3