Artificial Intelligence for the Classification of Pigmented Skin Lesions in Populations with Skin of Color: A Systematic Review

Author:

Liu YuyangORCID,Primiero Clare A.,Kulkarni Vishnutheertha,Soyer H. PeterORCID,Betz-Stablein BrigidORCID

Abstract

Background: While skin cancers are less prevalent in people with skin of color, they are more often diagnosed at later stages and have a poorer prognosis. The use of artificial intelligence (AI) models can potentially improve early detection of skin cancers; however, the lack of skin color diversity in training datasets may only widen the pre-existing racial discrepancies in dermatology. Objective: The aim of this study was to systematically review the technique, quality, accuracy, and implications of studies using AI models trained or tested in populations with skin of color for classification of pigmented skin lesions. Methods: PubMed was used to identify any studies describing AI models for classification of pigmented skin lesions. Only studies that used training datasets with at least 10% of images from people with skin of color were eligible. Outcomes on study population, design of AI model, accuracy, and quality of the studies were reviewed. Results: Twenty-two eligible articles were identified. The majority of studies were trained on datasets obtained from Chinese (7/22), Korean (5/22), and Japanese populations (3/22). Seven studies used diverse datasets containing Fitzpatrick skin type I–III in combination with at least 10% from black Americans, Native Americans, Pacific Islanders, or Fitzpatrick IV–VI. AI models producing binary outcomes (e.g., benign vs. malignant) reported an accuracy ranging from 70% to 99.7%. Accuracy of AI models reporting multiclass outcomes (e.g., specific lesion diagnosis) was lower, ranging from 43% to 93%. Reader studies, where dermatologists’ classification is compared with AI model outcomes, reported similar accuracy in one study, higher AI accuracy in three studies, and higher clinician accuracy in two studies. A quality review revealed that dataset description and variety, benchmarking, public evaluation, and healthcare application were frequently not addressed. Conclusions: While this review provides promising evidence of accurate AI models in populations with skin of color, the majority of the studies reviewed were obtained from East Asian populations and therefore provide insufficient evidence to comment on the overall accuracy of AI models for darker skin types. Large discrepancies remain in the number of AI models developed in populations with skin of color (particularly Fitzpatrick type IV–VI) compared with those of largely European ancestry. A lack of publicly available datasets from diverse populations is likely a contributing factor, as is the inadequate reporting of patient-level metadata relating to skin color in training datasets.

Publisher

S. Karger AG

Subject

Dermatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3