Technology innovation to reduce health inequality in skin diagnosis and to improve patient outcomes for people of color: a thematic literature review and future research agenda

Author:

Khatun Nazma,Spinelli Gabriella,Colecchia Federico

Abstract

The health inequalities experienced by ethnic minorities have been a persistent and global phenomenon. The diagnosis of different types of skin conditions, e.g., melanoma, among people of color is one of such health domains where misdiagnosis can take place, potentially leading to life-threatening consequences. Although Caucasians are more likely to be diagnosed with melanoma, African Americans are four times more likely to present stage IV melanoma due to delayed diagnosis. It is essential to recognize that additional factors such as socioeconomic status and limited access to healthcare services can be contributing factors. African Americans are also 1.5 times more likely to die from melanoma than Caucasians, with 5-year survival rates for African Americans significantly lower than for Caucasians (72.2% vs. 89.6%). This is a complex problem compounded by several factors: ill-prepared medical practitioners, lack of awareness of melanoma and other skin conditions among people of colour, lack of information and medical resources for practitioners’ continuous development, under-representation of people of colour in research, POC being a notoriously hard to reach group, and ‘whitewashed’ medical school curricula. Whilst digital technology can bring new hope for the reduction of health inequality, the deployment of artificial intelligence in healthcare carries risks that may amplify the health disparities experienced by people of color, whilst digital technology may provide a false sense of participation. For instance, Derm Assist, a skin diagnosis phone application which is under development, has already been criticized for relying on data from a limited number of people of color. This paper focuses on understanding the problem of misdiagnosing skin conditions in people of color and exploring the progress and innovations that have been experimented with, to pave the way to the possible application of big data analytics, artificial intelligence, and user-centred technology to reduce health inequalities among people of color.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3