Proteome and Transcriptome Reveal Involvement of Heat Shock Proteins and Indoleacetic Acid Metabolism Process in Lentinula Edodes Thermotolerance

Author:

Wang Gang-Zheng,Ma Chao-Jun,Luo Yi,Zhou Sha-Sha,Zhou Yan,Ma Xiao-Long,Cai Ying-Li,Yu Jing-Jing,Bian Yin-Bing,Gong Yu-Hua

Abstract

Background/Aims: Heat stress could cause huge losses for Lentinula edodes in China and other Asian cultivation areas. Yet our understanding of mechanism how to defend to heat stress is incomplete. Methods: Using heat-tolerant and heat-sensitive strains of L. edodes, we reported a combined proteome and transcriptome analysis of L. edodes response to 40 °C heat stress for 24 h. Meanwhile, the effect of LeDnaJ on the thermotolerance and IAA (indoleacetic acid) biosynthesis in L. edodes was analyzed via the over-expression method. Results: The proteome results revealed that HSPs (heat shock proteins) such as Hsp40 (DnaJ), Hsp70, Hsp90 and key enzymes involved in tryptophan and IAA metabolism process LeTrpE, LeTrpD, LeTam-1, LeYUCCA were more highly expressed in S606 than in YS3357, demonstrating that HSPs and tryptophan as well as IAA metabolism pathway should play an important role in thermotolerance. Over-expression of LeDnaJ gene in S606 strains showed better tolerance to heat stress. It was also documented that intracellular IAA accumulation of S606 (8-fold up) was more than YS3357 (2-fold up), and exogenous IAA enhanced L. edodes tolerance to heat stress. Conclusion: Our data support the interest of LeTrpE, LeDnaJ, tryptophan and IAA could play a pivotal role in enhancing organism thermotolerance.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3