Diagnostic and Management Performance of ChatGPT in Obstetrics and Gynecology

Author:

Allahqoli Leila,Ghiasvand Mohammad Matin,Mazidimoradi Afrooz,Salehiniya Hamid,Alkatout Ibrahim

Abstract

Objectives: The use of artificial intelligence (AI) in clinical patient management and medical education has been advancing over time. ChatGPT was developed and trained recently, using a large quantity of textual data from the internet. Medical science is expected to be transformed by its use. The present study was conducted to evaluate the diagnostic and management performance of the ChatGPT AI model in obstetrics and gynecology. Design: A cross-sectional study was conducted. Participants/Materials, Setting, Methods: This study was conducted in Iran in March 2023. Medical histories and examination results of 30 cases were determined in six areas of obstetrics and gynecology. The cases were presented to a gynecologist and ChatGPT for diagnosis and management. Answers from the gynecologist and ChatGPT were compared, and the diagnostic and management performance of ChatGPT were determined. Results: Ninety percent (27 of 30) of the cases in obstetrics and gynecology were correctly handled by ChatGPT. Its responses were eloquent, informed, and free of a significant number of errors or misinformation. Even when the answers provided by ChatGPT were incorrect, the responses contained a logical explanation about the case as well as information provided in the question stem. Limitations: The data used in this study were taken from the electronic book and may reflect bias in the diagnosis of ChatGPT. Conclusions: This is the first evaluation of ChatGPT’s performance in diagnosis and management in the field of obstetrics and gynecology. It appears that ChatGPT has potential applications in the practice of medicine and is (currently) free and simple to use. However, several ethical considerations and limitations such as bias, validity, copyright infringement, and plagiarism need to be addressed in future studies.

Publisher

S. Karger AG

Subject

Obstetrics and Gynecology,Reproductive Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3