Author:
Zhao Sida,Li Bin,Gao Hua,Zhang Yazhuo
Abstract
<b><i>Introduction:</i></b> Aberrant miR-320a has been reported to be involved in the tumorigenesis of several cancers. In our previous study, we identified the low expression of circulating miR-320a in patients with somatotroph pituitary neuroendocrine tumor (PitNET); however, the role of miR-320a in somatotroph PitNET proliferation is still unclear. <b><i>Methods:</i></b> Cell viability and colony formation assays were used to detect the effect of miR-320a and BCAT1 on GH3 cells. TargetScan was used to identify the target genes of miR-320a. Dual-luciferase reporter gene assay was used to explore the relation between miR-320a and BCAT1. Transcriptome and proteome analyses were performed between somatotroph PitNETs and healthy controls. The expression level of miR-320a in somatotroph PitNETs were detected by RT-qPCR and Western blot. <b><i>Results:</i></b> miR-320a mimics inhibit cell proliferation, while miR-320a inhibitors promote cell proliferation in GH3 cells. An overlap analysis using a Venn diagram revealed that BCAT1 is the only target gene of miR-320a overexpressed in somatotroph PitNETs compared to healthy controls, as revealed by both microarray and proteomics results. A dual-luciferase reporter gene assay showed that miR-320a may bind to the BCAT1-3′UTR. The transfection of miR-320a mimics downregulated the expression and miR-320a inhibitors and upregulated the expression of BCAT1 in GH3 cells. The interference of BCAT1 expression in GH3 cells downregulated cell proliferation and growth. Pan-cancer analyses demonstrated that high BCAT1 expression often indicates a poor prognosis. <b><i>Conclusion:</i></b> Our findings illustrate that miR-320a may function as a tumor suppressor and BCAT1 may promote tumor progression. miR-320a may inhibit the growth of somatotroph PitNETs by targeting BCAT1.
Subject
Cellular and Molecular Neuroscience,Endocrine and Autonomic Systems,Endocrinology,Endocrinology, Diabetes and Metabolism
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献