Inhalation of Hydrogen of Different Concentrations Ameliorates Spinal Cord Injury in Mice by Protecting Spinal Cord Neurons from Apoptosis, Oxidative Injury and Mitochondrial Structure Damages

Author:

Chen Xiao,Cui Jin,Zhai Xiao,Zhang Jun,Gu Zhengrong,Zhi Xin,Weng Weizong,Pan Panpan,Cao Liehu,Ji Fang,Wang Zhiwei,Su Jiacan

Abstract

Background/Aims: Hydrogen selectively neutralizes reactive oxygen species (ROS) and ameliorates various ROS-induced injuries. Spinal cord injury (SCI) is a serious injury to the central nervous system, and secondary SCI is closely related to excessive ROS generation. We hypothesized that hydrogen inhalation ameliorates SCI, and the mechanism of action may be related to the protective effects of hydrogen against oxidative stress, apoptosis, and mitochondrial damage. Methods: Mechanically injured spinal cord neurons were incubated with different concentrations of hydrogen in vitro. Immunofluorescence staining and transmission electron microscopy were used to confirm the protective effects of hydrogen. ROS and related proteins were detected with dihydroethidium fluorescence staining, enzyme-linked immunosorbent assays, and western blotting. Terminal deoxynucleotidyl transferase dUTP nick end labeling assays, flow cytometry, and western blotting were used to detect neuronal apoptosis. ATP concentrations, Janus Green B staining, and mitochondrial permeability transition pore (mPTP) status were assessed to investigate mitochondrial damage. RNA sequencing was performed to screen potential target genes of hydrogen application. Hydrogen was administered to mice after spinal cord contusion injury was established for 42 days. The Basso Mouse Scale (BMS) and footprint analyses were used to assess locomotor functions, and immunofluorescence staining of the injured spinal cord segments was performed to detect oxidative stress status. Results: Spinal cord neurons were preserved by hydrogen administration after mechanical injury in a dose-dependent manner. ROS generation, oxidative stress injury-related markers, and the number of apoptotic neurons were significantly reduced after hydrogen treatment. The ATP production and mPTP function in injured neurons were preserved by hydrogen incubation. The expression levels of Cox8b, Cox6a2, Cox7a1, Hspb7, and Atp2a1 were inhibited by hydrogen treatment. BMS scores and the footprint assessment of mice with SCI were improved by hydrogen inhalation. Conclusions: Hydrogen inhalation (75%) ameliorated SCI in vivo and attenuated neuronal mechanical injuries in vitro, and its protective effect on spinal cord neurons was exerted in a dose-dependent manner. The underlying mechanisms included reducing ROS generation and oxidative stress, inhibiting neuronal apoptosis, and restoring mitochondrial construction and function. Cox8b, Cox6a2, Cox7a1, Hspb7, and Atp2a1 were identified as potential target genes of hydrogen treatment.

Publisher

S. Karger AG

Subject

Physiology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3