Molecular Hydrogen Promotes Adipose-derived Stem Cell Myogenic Differentiation via Regulation of Mitochondria

Author:

Fei Wen-Yong1ORCID,Yang Yu-Xia12ORCID,Liu Ming-Sheng1,Zhang Yu-Cheng12,Gao Rang-Shan12,Hu Yang-Yang1,Pang Er-Kai21,Hou Lei21

Affiliation:

1. Sports Medicine Department, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225001, People’s Republic of China

2. Dalian Medical University, Dalian 116044, People’s Republic of China

Abstract

Background: Acute skeletal muscle injuries are common physical or sports traumas. Cellular therapy has excellent potential for regeneration after skeletal muscle injury. Adipose-derived stem cells (ADSCs) are a more accessible type of stem cell. However, it has a low survival rate and differentiation efficiency in the oxidative stress-rich microenvironment after transplantation. Although molecular hydrogen (H2) possesses anti-inflammatory and antioxidant biological properties, its utility in mitochondrial and stem cell research has not been adequately explored. Objective: This study aimed to reveal the role of H2 on adipose-derived stem cells' myogenic differentiation. Methods: The protective effects of H2 in ADSCs were evaluated by MTT assay, live-dead cell staining, western blot analysis, immunofluorescence staining, confocal imaging, and transmission electron microscopy. Results: An appropriate volume fraction of H2 significantly decreased mitochondrial reactive oxygen species (ROS) levels, increased the number of mitochondria, and promoted mitophagy, thus enhancing the survival and myogenic differentiation of ADSCs. Conclusion: This study reveals the application potential of H2 in skeletal muscle diseases or other pathologies related to mitochondrial dysfunction.

Publisher

Bentham Science Publishers Ltd.

Subject

General Medicine,Medicine (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3