Biomimetic Remineralization of Human Enamel in the Presence of Polyamidoamine Dendrimers in vitro

Author:

Chen Liang,Yuan He,Tang Bei,Liang Kunneng,Li Jiyao

Abstract

Poly(amidoamine) (PAMAM) dendrimers, known as artificial proteins, have unique and well-defined molecular size and structure. It has previously been used to mimic protein-crystal interaction during biomineralization. In this study, generation 4.5 (4.5G) PAMAM with carboxylic acid (PAMAM-COOH) was synthesized and utilized to remineralize the surface of etched enamel in vitro. Using confocal laser scanning microscopy, Fourier transform infrared spectroscopy, X-ray diffraction analysis and scanning electron microscopy we observed that 4.5G PAMAM-COOH can be absorbed on the etched enamel surface and that it can induce the formation of hydroxyapatite crystals with the same orientation as that of the enamel prisms on longitudinal and transversal enamel surfaces. The self-assembly behavior of PAMAM in the mineralization solution was also investigated and the result showed that 4.5G PAMAM can assemble to microribbon structure similar to the behavior of amelogenins. Therefore, we concluded that 4.5G PAMAM-COOH assemblies can act as the organic template on enamel surface and in mineralization solution to control the nucleation site and morphology of new-grown crystals to form the biomimetic structure of human enamel, which may open a new way for repairing damaged enamel.

Publisher

S. Karger AG

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3