Combined Effect of a Bioinspired Self-Assembling Peptide and Fluoride Varnish on Remineralisation of Artificial Early Enamel Caries Lesion: An in vitro Study

Author:

Chen Kerry,Li Kai Chun,Ekambaram Manikandan,Zhang Ya,Fu Yipeng,Mei May Lei

Abstract

<b><i>Introduction:</i></b> This study aimed to investigate the remineralisation effect of combined use of a bioinspired self-assembling peptide (P26) and fluoride varnish on artificial early enamel caries lesions. <b><i>Methods:</i></b> Bovine enamel blocks with artificial early enamel caries lesions were prepared. The blocks were randomly allocated to four experimental groups to receive the following treatments: A = P26 + fluoride varnish, B = P26, C = fluoride varnish, and D. distilled water (negative control). The treated blocks were subjected to pH cycling. Enamel blocks were collected at time points of 7 days (d7) and 21 days (d21). The mineral gain, elemental analysis and crystal characteristics of the caries lesion were assessed by micro-computed tomography, scanning electron microscopy with energy dispersive X-ray and X-ray diffraction (XRD), respectively. <b><i>Results:</i></b> The mean ± standard deviation of mineral gain of group A to D were 17.4 ± 4.2%, 10.7 ± 2.2%, 10.1 ± 1.2%, and 6.8 ± 0.5% at d7, respectively, and 15.2 ± 2.6%, 8.7 ± 3.1%, 9.7 ± 1.2%, and 7.8 ± 2.3% at d21, respectively. A significant higher mineral gain was observed in group A when compared to other groups at both d7 and d21 (<i>p</i> &lt; 0.05). The calcium-to-phosphate ratio remained consistent across all groups, ranging between 1.2 and 1.4. XRD analysis indicated that crystal composition on the surfaces was apatite for all groups. <b><i>Conclusion:</i></b> In conclusion, the present study provided a first indication of better remineralisation effects of the combined use of the bioinspired self-assembling peptide P26 and fluoride varnish compared to the effects of the respective individual uses of P26 or fluoride varnish.

Publisher

S. Karger AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3