Maternally Expressed Gene 3 (MEG3) Enhances PC12 Cell Hypoxia Injury by Targeting MiR-147

Author:

Han Lili,Dong Zhiling,Liu Ningning,Xie Fei,Wang Ning

Abstract

Background/Aims: Cerebral ischemia often leads to breakdown of blood–brain barrier (BBB) and vasogenic edema. It remains to be established whether MEG3 is responsible for the hypoxic damage in neural cells. This study aimed to investigate the role of MEG3 in the hypoxia-induced injuries of PC12 cells. Methods: The PC12 cells were seeded and cultured under hypoxia and normoxia culture conditions. The cell viability determined by trypan blue exclusion, apoptosis using propidium iodide (PI) and fluorescein isothiocynate (FITC)-conjugated Annexin V staining, cell-migration using a modified two-chamber migration assay with a pore size of 8 µM and invasion using 24-well Millicell Hanging Cell Culture inserts with 8 µM PET membranes. Results: Cell viability, relative migration and relative invasion decreased significantly in PC12 cells injured due to hypoxia as compared to control cells. An increase in apoptosis was also observed. The expression of MEG3 was up-regulated in hypoxia-injured PC12 cells. MEG3 overexpression enhanced hypoxia injuries, while MEG3 suppression attenuated the injuries. Meanwhile, MEG3 negatively regulated miR-147 expression. In addition, we found that the expression of Sox2 was increased in PC12 cells after hypoxia and miR-147 negatively regulated Sox2 expression through targets its 3’-UTR. Interesting, Sox2 activated NF-κB pathway and Wnt/β-catenin pathway in PC12 cells. Conclusion: Considering the observations in our study, we can conclude that MEG3 aggravated the hypoxial injury in PC12 cells by down-regulating miR-147 gene and miR-147 further negatively regulated Sox2 expression.

Publisher

S. Karger AG

Subject

Physiology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3