An Integrative in silico Study to Discover Key Drivers in Pathogenicity of Focal and Segmental Glomerulosclerosis

Author:

Gholaminejad AliehORCID,Ghaeidamini MaryamORCID,Simal-Gandara JesusORCID,Roointan Amir

Abstract

<b><i>Background:</i></b> Focal and segmental glomerulosclerosis (FSGS) is a clinical-pathologic condition marked by segmental and localized glomerular damages. Despite investigations, the molecular mechanisms behind FSGS development remain to be more clarified. By a comprehensive analysis of an FSGS-related array set, the aim of this study was to unravel the top pathways and molecules involved in the pathogenesis of this disorder. <b><i>Methods:</i></b> FSGS-related microarray dataset (GSE129973) from the Gene Expression Omnibus database was quality checked, analyzed, and its differentially expressed genes (DEGs) (log2 fold change &#x3e; 1) were used for the construction of a protein-protein interaction (PPI) network (STRING). The degree of centrality was considered to select the hub molecules in the network. The weighted gene co-expression network analysis (WGCNA) was utilized to construct co-expression modules. Hub molecules were selected based on module membership and gene significance values in the disease’s most correlated module. After spotting the key molecules considering both strategies, their expression pattern was checked in other FSGS microarray datasets. Gene ontology and Reactome pathway enrichment analyses were performed on the DEGs of the related module. <b><i>Results:</i></b> After quality checking, normalization, and analysis of the dataset, 5,296 significant DEGs, including 2,469 upregulated and 2,827 downregulated DEGs were identified. The WGCNA algorithm clustered the DEGs into nine independent co-expression modules. The disease most correlated module (black module) was recognized and considered for further enrichment analysis. The immune system, cell cycle, and vesicle-mediated transports were among the top enriched terms for the identified module’s DEGs. The immune system, cell cycle, and vesicle-mediated transports were among the top enriched terms for the black module’s DEGs. The key molecules (<i>BMP-2</i> and <i>COL4A1</i>) were identified as common hub molecules extracted from the two methods of PPI and the co-expressed networks. The two identified key molecules were validated in other FSGS datasets, where a similar pattern of expression was observed for both the genes. <b><i>Conclusions:</i></b> Two hub molecules (<i>BMP-2</i> and <i>COL4A</i>) and some pathways (vesicle-mediated transport) were recognized as potential players in the pathogenesis of FSGS.

Publisher

S. Karger AG

Subject

Cardiology and Cardiovascular Medicine,Nephrology,Cardiology and Cardiovascular Medicine,Nephrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3