Comprehensive analysis of diabetic nephropathy expression profile based on weighted gene co-expression network analysis algorithm

Author:

Gholaminejad Alieh,Fathalipour Mohammad,Roointan Amir

Abstract

Abstract Background Diabetic nephropathy (DN) is the major complication of diabetes mellitus, and leading cause of end-stage renal disease. The underlying molecular mechanism of DN is not yet completely clear. The aim of this study was to analyze a DN microarray dataset using weighted gene co-expression network analysis (WGCNA) algorithm for better understanding of DN pathogenesis and exploring key genes in the disease progression. Methods The identified differentially expressed genes (DEGs) in DN dataset GSE47183 were introduced to WGCNA algorithm to construct co-expression modules. STRING database was used for construction of Protein-protein interaction (PPI) networks of the genes in all modules and the hub genes were identified considering both the degree centrality in the PPI networks and the ranked lists of weighted networks. Gene ontology and Reactome pathway enrichment analyses were performed on each module to understand their involvement in the biological processes and pathways. Following validation of the hub genes in another DN dataset (GSE96804), their up-stream regulators, including microRNAs and transcription factors were predicted and a regulatory network comprising of all these molecules was constructed. Results After normalization and analysis of the dataset, 2475 significant DEGs were identified and clustered into six different co-expression modules by WGCNA algorithm. Then, DEGs of each module were subjected to functional enrichment analyses and PPI network constructions. Metabolic processes, cell cycle control, and apoptosis were among the top enriched terms. In the next step, 23 hub genes were identified among the modules in genes and five of them, including FN1, SLC2A2, FABP1, EHHADH and PIPOX were validated in another DN dataset. In the regulatory network, FN1 was the most affected hub gene and mir-27a and REAL were recognized as two main upstream-regulators of the hub genes. Conclusions The identified hub genes from the hearts of co-expression modules could widen our understanding of the DN development and might be of targets of future investigations, exploring their therapeutic potentials for treatment of this complicated disease.

Publisher

Springer Science and Business Media LLC

Subject

Nephrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3