Author:
Wang Junrui,Zhang Junli,Fu Quan,Guo Sufang,Ta La,Sun Peng
Abstract
This study aimed to investigate the molecular mechanisms underlying the antibiotic resistance difference among three <i>Acinetobacter baumannii</i> isolates. Fifty <i>A. baumannii</i> isolates were first subjected to an antimicrobial susceptibility test, then three isolates differing in antibiotic resistance were selected and subjected to iTRAQ (isobaric tags for relative and absolute quantification)-based proteomics analysis. Differential proteins among the three <i>A. baumannii</i> isolates were further identified and subjected to gene ontology functional enrichment analysis. A resistant isolate (A1), a less resistant one (A8) and a susceptible one (A9) were selected. In total, there were 424 differentially expressed proteins (DEPs) between the A1 and A8 isolates, 1,992 DEPs between the A9 and A1 isolates, and 1,956 DEPs between the A8 and A9 isolates. The upregulation of I6TUC8 and Q0GA83 in the A1 and A8 isolates may be responsible for their higher resistance to ceftriaxone. The higher gentamicin resistance of <i>A. baumannii</i> isolates A1 and A8 when compared to A9 may be related to the higher expression levels of O05286 and D0CCK1, while the higher Q2FCY1 expression level may contribute more to strong gentamicin resistance in A1. The higher levels of L9LWL7, L9MDB0, K9C9W3, E2IGU7, B6E129, G8HYR7, D2XTB0 and D2XTB0 may be responsible for the higher carbapenem resistance of isolate A1 as compared to A8.
Subject
Molecular Biology,Applied Microbiology and Biotechnology,Microbiology,Biotechnology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献