Use of Some Relevant Parameters for Primary Prediction of Brain Activity in Idiopathic Tinnitus Based on a Machine Learning Application

Author:

Mohsen Samer,Sadeghijam Maryam,Talebian SaeedORCID,Pourbakht Akram

Abstract

Introduction: Tinnitus is one of the most common complaints, distressing about 15–24% of the adult population. Because of its pathophysiology heterogeneity, no curable treatment has been attained yet. Even though a neuromodulation management technique based on the tinnitus network model is currently being developed, it has not yet worked because the most involved brain areas still remain unpredictable from the patient’s individual clinical and functional profile. A remarkable correlation between tinnitus network activity and the subjective measures of tinnitus like perceived loudness and annoyance and functional handicap is well established. Therefore, this study aimed to develop software for predicting the involved brain areas in the tinnitus network based on the subjective characteristics and clinical profile of patients using a supervised machine-learning method. Methods: The involved brain areas of 30 tinnitus patients ranging from 6 to 80 months in duration were recognized by using QEEG and sLORETA software. There was a correlation between subjective information and those areas of activities in all rhythms by which we wrote our software. Results: For verification and validation of the software, we compared and analyzed the results with SPSS data and the receiver operating characteristic (ROC) curves. Conclusions: The findings of this study confirmed the effectiveness of the software in predicting the brain activity in tinnitus subjects; however, some other important parameters can be added to the model to strengthen its reliability and feasibility in clinical use.

Publisher

S. Karger AG

Subject

Speech and Hearing,Sensory Systems,Otorhinolaryngology,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3