Gp91phox (NOX2) in Activated Microglia Exacerbates Neuronal Damage Induced by Oxygen Glucose Deprivation and Hyperglycemia in an in Vitro Model

Author:

Zeng Xianzhang,Ren Hongliang,Zhu Yana,Zhang Ruru,Xue Xinxin,Tao Tao,Xi Hongjie

Abstract

Background/Aims: Peri-operative cerebral ischemia reperfusion injury is one of the most serious peri-operative complications that can be aggravated in patients with diabetes. A previous study showed that microglia NOX2 (a NADPH oxidase enzyme) may play an important role in this process. Here, we investigated whether increased microglial derived gp91phox, also known as NOX2, reduced oxygen glucose deprivation (OGD) after induction of hyperglycemia (HG). Methods: A rat neuronal-microglial in vitro co-culture model was used to determine the effects of gp91phox knockdown on OGD after HG using six treatment groups: A rat microglia and neuron co-culture model was established and divided into the following six groups: high glucose + scrambled siRNA transfection (HG, n = 5); HG + gp91phoxsiRNA transfection (HG-gp91siRNA, n = 5); oxygen glucose deprivation + scrambled siRNA transfection (OGD, n = 5); OGD + gp91phoxsiRNA transfection (OGD-gp91siRNA, n = 5); HG + OGD + scrambled siRNA transfection (HG-OGD, n = 5); and HG + OGD + gp91phoxsiRNA transfection (HG-OGD-gp91siRNA, n = 5). The neuronal survival rate was measured by the MTT assay, while western blotting was used to determine gp91phox expression. Microglial derived ROS and neuronal apoptosis rates were analyzed by flow cytometry. Finally, the secretion of cytokines, including IL-6, IL-8, TNF-α, and 8-iso-PGF2α was determined using an ELISA kit. Results: Neuronal survival rates were significantly decreased by HG and OGD, while knockdown of gp91phox reversed these rates. ROS production and cytokine secretion were also significantly increased by HG and OGD but were significantly inhibited by knockdown of gp91phoxsiRNA. Conclusion: Knockdown of gp91phoxsiRNA significantly reduced oxidative stress and the inflammatory response, and alleviated neuronal damage after HG and OGD treatment in a rat neuronal-microglial co-culture model.

Publisher

S. Karger AG

Subject

Physiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3