Author:
Sun Taitao,Li Xianjun,Song Hua,Gao Fei,Zhou Guannan,Li Xiaoyan,Chen Zhentong,Chen Lei
Abstract
Background/Aims: Osteoarthritis (OA) as a degenerative disease is a major problem in ageing populations. To better understand the molecular mechanisms in the pathogenesis of OA, this study explored the role of microRNA (miR)-146a in the articular chondrocytes. Methods: The articular chondrocyte line ATDC5 was used to simulate inflammatory injury by LPS administration in vitro. Cell viability, apoptosis, mRNA expressions and productions of inflammatory factors were assessed, respectively. Mir-146a and Cxcr4 mRNA expressions were measured by qRT-PCR. Targeting effect of miR-146a on Cxcr4 3’UTR was assessed by luciferase activity analysis. Protein expression levels of CXCR4 and main factors in PI3K/AKT, Wnt/β-catenin signal pathways were measured by western blotting. Results: LPS exposure suppressed cell viability, prompted apoptosis of ATDC5 cells, and stimulated expression and release of inflammatory factors. MiR-146a was upregulated in LPS-induced cells. Overexpression of miR-146a further aggravated LPS-induced inflammatory injury, while it was reduced after miR-146a was knocked down. CXCR4 expression was negatively regulated by miR-146a. CXCR4 was a direct target of miR-146a and thus involved in regulatory effect of miR-146a on the injured chondrocytes, which was also related with phosphorylation levels of PI3K/AKT and expressions of Wnt/β-catenin signal factors. Conclusion: miR-146a promoted inflammatory response of articular chondrocytes via targeting CXCR4 and suppressing CXCR4 expression. Overexpression of CXCR4 could attenuate the inflammatory injury. Our findings provided novel evidence which might be useful for further studies exploring therapeutic approaches for OA via targeting miR-146a.
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献