Anti-Allergic Drugs Tranilast and Ketotifen Dose-Dependently Exert Mast Cell-Stabilizing Properties

Author:

Baba Asuka,Tachi Masahiro,Ejima Yutaka,Endo Yasuhiro,Toyama Hiroaki,Matsubara Mitsunobu,Saito Kazutomo,Yamauchi Masanori,Miura Chieko,Kazama Itsuro

Abstract

Background: Anti-allergic drugs, such as tranilast and ketotifen, inhibit the release of chemokines from mast cells. However, we know little about their direct effects on the exocytotic process of mast cells. Since exocytosis in mast cells can be monitored electrophysiologically by changes in the whole-cell membrane capacitance (Cm), the absence of such changes by these drugs indicates their mast cell-stabilizing properties. Methods: Employing the standard patch-clamp whole-cell recording technique in rat peritoneal mast cells, we examined the effects of tranilast and ketotifen on the Cm during exocytosis. Using confocal imaging of a water-soluble fluorescent dye, lucifer yellow, we also examined their effects on the deformation of the plasma membrane. Results: Relatively lower concentrations of tranilast (100, 250 µM) and ketotifen (1, 10 µM) did not significantly affect the GTP-γ-S-induced increase in the Cm. However, higher concentrations of tranilast (500 µM, 1 mM) and ketotifen (50, 100 µM) almost totally suppressed the increase in the Cm, and washed out the trapping of the dye on the surface of the mast cells. Compared to tranilast, ketotifen required much lower doses to similarly inhibit the degranulation of mast cells or the increase in the Cm. Conclusions: This study provides electrophysiological evidence for the first time that tranilast and ketotifen dose-dependently inhibit the process of exocytosis, and that ketotifen is more potent than tranilast in stabilizing mast cells. The mast cell-stabilizing properties of these drugs may be attributed to their ability to counteract the plasma membrane deformation in degranulating mast cells.

Publisher

S. Karger AG

Subject

Physiology

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3