Formononetin Inhibits Mast Cell Degranulation to Ameliorate Compound 48/80-Induced Pseudoallergic Reactions

Author:

Zhou Zi-Wen1ORCID,Zhu Xue-Yan1ORCID,Li Shu-Ying1ORCID,Lin Si-En1ORCID,Zhu Yu-Han1ORCID,Ji Kunmei1ORCID,Chen Jia-Jie1ORCID

Affiliation:

1. Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, No. 1066 Xueyuan Road, Nanshan District, Shenzhen 518055, China

Abstract

Formononetin (FNT) is a plant-derived isoflavone natural product with anti-inflammatory, antioxidant, and anti-allergic properties. We showed previously that FNT inhibits immunoglobulin E (IgE)-dependent mast cell (MC) activation, but the effect of FNT on IgE-independent MC activation is yet unknown. Our aim was to investigate the effects and possible mechanisms of action of FNT on IgE-independent MC activation and pseudoallergic inflammation. We studied the effects of FNT on MC degranulation in vitro with a cell culture model using compound C48/80 to stimulate either mouse bone marrow-derived mast cells (BMMCs) or RBL-2H3 cells. We subsequently measured β-hexosaminase and histamine release, the expression of inflammatory factors, cell morphological changes, and changes in NF-κB signaling. We also studied the effects of FNT in several in vivo murine models of allergic reaction: C48/80-mediated passive cutaneous anaphylaxis (PCA), active systemic anaphylaxis (ASA), and 2,4-dinitrobenzene (DNCB)-induced atopic dermatitis (AD). The results showed that FNT inhibited IgE-independent degranulation of MCs, evaluated by a decrease in the release of β-hexosaminase and histamine and a decreased expression of inflammatory factors. Additionally, FNT reduced cytomorphological elongation and F-actin reorganization and attenuated NF-κB p65 phosphorylation and NF-κB-dependent promoter activity. Moreover, the administration of FNT alleviated pseudoallergic responses in vivo in mouse models of C48/80-stimulated PCA and ASA, and DNCB-induced AD. In conclusion, we suggest that FNT may be a novel anti-allergic drug with great potential to alleviate pseudoallergic responses via the inhibition of IgE-independent MC degranulation and NF-κB signaling.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3