Identification of Hub Genes Associated with the Development of Acute Kidney Injury by Weighted Gene Co-Expression Network Analysis

Author:

Lin Xiao,Li Jianchun,Tan Ruizhi,Zhong Xia,Yang Jieke,Wang Li

Abstract

<b><i>Background:</i></b> Acute kidney injury (AKI) is a severe clinical syndrome, causing a profound medical and socioeconomic burden worldwide. This study aimed to explore underlying molecular targets related to the progression of AKI. <b><i>Methods:</i></b> A public database originated from the NCBI GEO database (serial number: GSE121190) and a well-established and unbiased method of weighted gene co-expression network analysis (WGCNA) to identify hub genes and potential pathways were used. Furthermore, the unbiased hub genes were validated in 2 classic models of AKI in a rodent model: chemically established AKI by cisplatin- and ischemia reperfusion-induced AKI. <b><i>Results:</i></b> A total of 17 modules were finally obtained by the unbiased method of WGCNA, where the genes in turquoise module displayed strong correlation with the development of AKI. In addition, the results of gene ontology revealed that the genes in turquoise module were involved in renal injury and renal fibrosis. Thus, the hub genes were further validated by experimental methods and primarily obtained Rplp1 and Lgals1 as key candidate genes related to the progression of AKI by the advantage of quantitative PCR, Western blotting, and in situ tissue fluorescence. Importantly, the expression of Rplp1 and Lgals1 at the protein level showed positive correlation with renal function, including serum Cr and BUN. <b><i>Conclusions:</i></b> By the advantage of unbiased bioinformatic method and consequent experimental verification, this study lays the foundation basis for the pathogenesis and therapeutic agent development of AKI.

Publisher

S. Karger AG

Subject

Cardiology and Cardiovascular Medicine,Nephrology,Cardiology and Cardiovascular Medicine,Nephrology

Reference39 articles.

1. Venkatachalam MA, Weinberg JM, Kriz W, Bidani AK. Failed tubule recovery, AKI-CKD transition, and kidney disease progression. J Am Soc Nephrol. 2015 Aug;26(8):1765–76.

2. Dong Y, Zhang Q, Wen J, Chen T, He L, Wang Y, et al. Ischemic duration and frequency determines AKI-to-CKD progression monitored by dynamic changes of tubular biomarkers in IRI mice. Front Physiol. 2019;10:153.

3. Song Y, Tao Q, Yu L, Li L, Bai T, Song X, et al. Activation of autophagy contributes to the renoprotective effect of postconditioning on acute kidney injury and renal fibrosis. Biochem Biophys Res Commun. 2018;504(4):641–6.

4. Jaworska K, Ratajczak J, Huang L, Whalen K, Yang M, Stevens BK, et al. Both PD-1 ligands protect the kidney from ischemia reperfusion injury. J Immunol. 2015 Jan 1;194(1):325–33.

5. Chen Y, Lin L, Tao X, Song Y, Cui J, Wan J. The role of podocyte damage in the etiology of ischemia-reperfusion acute kidney injury and post-injury fibrosis. BMC Nephrol. 2019 3 28;20(1):106.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3