Affiliation:
1. Institute of Organ Transplantation, Tongji Hospital, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
Abstract
Background. Renal ischemia-reperfusion injury (RIRI) plays an important role in the poor prognosis of patients with renal transplants. However, the potential targets and mechanism of IRI are still unclear. Method. Differential gene expression (DEG) analysis and weighted correlation network analysis (WGCNA) were performed on the GSE27274 dataset. Pathway enrichment analysis on the DEGs was performed. To identify the hub DEGs, we constructed a protein-protein interaction (PPI) network. Finally, the hub genes were verified, and candidate drugs were screened from the DsigDB database. Results. A hundred DEGs and four hub genes (Atf3, Psmb6, Psmb8, and Psmb10) were screened out. Pathway enrichment analysis revealed that 100 DEGs were mainly enriched in apoptosis and the TNF signaling pathway. The four hub genes were verified in animal models and another dataset (GSE148420). Thereafter, a PPI network was used to identify the four hub genes (Atf3, Psmb6, Psmb8, and Psmb10). Finally, eight candidate drugs were identified as potential drugs. Conclusion. Three hub genes (Psmb6, Psmb8, and Psmb10) were associated with RIRI and could be potential novel biomarkers for RIRI.
Funder
China Organ Transplantation Foundation
Subject
General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献