The Effect of Perinatal Hypoxic/Ischemic Injury on Tyrosine Hydroxylase Expression in the Locus Coeruleus of the Human Neonate

Author:

Pagida Marianna A.,Konstantinidou Anastasia E.,Korelidou Anna,Katsika Dimitra,Tsekoura Effrosini,Patsouris Efstratios,Panayotacopoulou Maria T.

Abstract

We have previously shown that perinatal hypoxic/ischemic injury (HII) may cause selective vulnerability of the mesencephalic dopaminergic neurons of human neonate. In the present study, we investigated the effect of perinatal HII on the noradrenergic neurons of the locus coeruleus (LC) of the same sample. We studied immunohistochemically the expression of tyrosine hydroxylase (TH, first limiting enzyme for catecholamine synthesis) in LC neurons of 15 autopsied infants (brains collected from the Greek Brain Bank) in relation to the neuropathological changes of acute or chronic HII of the neonatal brain. Our results showed that perinatal HII appears to affect the expression of TH and the size of LC neurons of the human neonate. In subjects with neuropathological lesions consistent with abrupt/severe HII, intense TH immunoreactivity was found in almost all neurons of the LC. In most of the neonates with neuropathological changes of prolonged or older injury, however, reduction in cell size and a decrease or absence of TH staining were observed in the LC. Intense TH immunoreactivity was found in the LC of 3 infants of the latter group, who interestingly had a longer survival time and had been treated with anticonvulsant drugs. Based on our observations and in view of experimental evidence indicating that the reduction of TH-immunoreactive neurons occurring in the LC after perinatal hypoxic insults persists into adulthood, we suggest that a dysregulation of monoaminergic neurotransmission in critical periods of brain development in humans is likely to predispose the survivors of perinatal HII, in combination with genetic susceptibility, to psychiatric and/or neurological disorders later in life.

Publisher

S. Karger AG

Subject

Developmental Neuroscience,Neurology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3