Prenatal hypoxia alters the early ontogeny of dopamine neurons

Author:

Brandon Anastasia,Cui Xiaoying,Luan Wei,Ali Asad Amanat,Pertile Renata Aparecida Nedel,Alexander Suzanne Adele,Eyles Darryl WalterORCID

Abstract

AbstractDopaminergic (DA) dysfunction is a significant feature in the pathophysiology of schizophrenia. Established developmental risk factors for schizophrenia such as maternal immune activation (MIA) or developmental vitamin D (DVD) deficiency, when modelled in animals, reveal the differentiation of early DA neurons in foetal brains is delayed suggesting this may be a convergent aetiological pathway. Here we have assessed the effects of prenatal hypoxia, another well-known developmental risk factor for schizophrenia, on developing DA systems. Pregnant mice were exposed to a hypoxic environment of 10% oxygen for 48 h from embryonic day 10 (E10) to E12. Embryonic brains were collected and the positioning of mesencephalic cells, expression of DA specification and maturation factors were examined along with the expression of factors that may govern the migration of these neurons. We show that prenatal hypoxia results in a decrease in dopaminergic progenitors retards early DA neuron lateral migration and reduces expression of the receptors known to govern this process. A second time-point, postnatal day 10 (P10) was also examined in order to assess whether prenatal hypoxia alters early presynaptic architecture in the developing striatum. We show reduced expression of tyrosine hydroxylase (TH) in the postnatal striatum along with increases in the density of high-probability DA release sites within TH varicosities. These findings add to the emerging literature showing that multiple epidemiologically validated environmental risk factors for schizophrenia may induce early alterations to develop DA systems. This may represent a possible convergent mechanism in the onset of presynaptic DA dysfunction in patients.

Funder

Department of Health | National Health and Medical Research Council

Publisher

Springer Science and Business Media LLC

Subject

Biological Psychiatry,Cellular and Molecular Neuroscience,Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3