Evolution of Endolymph Secretion and Endolymphatic Potential Generation in the Vertebrate Inner Ear

Author:

Köppl Christine,Wilms Viviane,Russell Ian John,Nothwang Hans GerdORCID

Abstract

The ear of extant vertebrates reflects multiple independent evolutionary trajectories. Examples include the middle ear or the unique specializations of the mammalian cochlea. Another striking difference between vertebrate inner ears concerns the differences in the magnitude of the endolymphatic potential. This differs both between the vestibular and auditory part of the inner ear as well as between the auditory periphery in different vertebrates. Here we provide a comparison of the cellular and molecular mechanisms in different endorgans across vertebrates. We begin with the lateral line and vestibular systems, as they likely represent plesiomorphic conditions, then review the situation in different vertebrate auditory endorgans. All three systems harbor hair cells bathed in a high (K+) environment. Superficial lateral line neuromasts are bathed in an electrogenically maintained high (K+) microenvironment provided by the complex gelatinous cupula. This is associated with a positive endocupular potential. Whether this is a special or a universal feature of lateral line and possibly vestibular cupulae remains to be discovered. The vestibular system represents a closed system with an endolymph that is characterized by an enhanced (K+) relative to the perilymph. Yet only in land vertebrates does (K+) exceed (Na+). The endolymphatic potential ranges from +1 to +11 mV, albeit we note intriguing reports of substantially higher potentials of up to +70 mV in the cupula of ampullae of the semicircular canals. Similarly, in the auditory system, a high (K+) is observed. However, in contrast to the vestibular system, the positive endolymphatic potential varies more substantially between vertebrates, ranging from near zero mV to approximately +100 mV. The tissues generating endolymph in the inner ear show considerable differences in cell types and location. So-called dark cells and the possibly homologous ionocytes in fish appear to be the common elements, but there is always at least one additional cell type present. To inspire research in this field, we propose a classification for these cell types and discuss potential evolutionary relationships. Their molecular repertoire is largely unknown and provides further fertile ground for future investigation. Finally, we propose that the ultimate selective pressure for an increased endolymphatic potential, as observed in mammals and to a lesser extent in birds, is specifically to maintain the AC component of the hair-cell receptor potential at high frequencies. In summary, we identify intriguing questions for future directions of research into the molecular and cellular basis of the endolymph in the different compartments of the inner ear. The answers will provide important insights into evolutionary and developmental processes in a sensory organ essential to many species, including humans.

Publisher

S. Karger AG

Subject

Behavioral Neuroscience,Developmental Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3