A morphometric comparison of the ductus reuniens in humans and guinea pigs, with a note on its evolutionary importance

Author:

Smith Christopher M.12ORCID,Curthoys Ian S.3ORCID,Laitman Jeffrey T.245ORCID

Affiliation:

1. Division of Anthropology American Museum of Natural History New York City New York USA

2. New York Consortium in Evolutionary Primatology New York USA

3. Vestibular Research Laboratory, School of Psychology University of Sydney Sydney New South Wales Australia

4. Center for Anatomy and Functional Morphology Icahn School of Medicine at Mount Sinai New York USA

5. Department of Otolaryngology Icahn School of Medicine at Mount Sinai New York USA

Abstract

AbstractThe mammalian inner ear contains the sensory organs responsible for balance (semicircular canals, utricle, and saccule) and hearing (cochlea). While these organs are functionally distinct, there exists a critical structural connection between the two: the ductus reuniens (DR). Despite its functional importance, comparative descriptions of DR morphology are limited, hindering our understanding of the evolutionary diversification of hearing and balance systems among mammals. Using virtual 3D models derived from micro‐CT, we examine the morphology of the DR and its relationship to the bony labyrinth in humans compared to that in a commonly used animal model, the guinea pig. Anatomical reconstructions and univariate measurements were carried out in the software 3D Slicer. Data indicate similarities in DR morphology between humans and guinea pigs in terms of overall shape. However, there are considerable differences in relative DR length and width between humans and guinea pigs. Humans possess a relatively shorter and narrower DR but with wider openings to the saccule and cochlear duct. This results in a relatively more constricted DR lumen in humans which may differentially limit fluid transfer between the saccule and cochlea. Our results reveal previously hidden morphological diversity in the communication between the hearing and balance systems of the mammalian inner ear which may indicate alternative strategies for isolating the Organ of Corti from the peripheral vestibular system throughout mammalian evolution.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3