Regulatory Role of miRNA-375 in Expression of BMP15/GDF9 Receptors and its Effect on Proliferation and Apoptosis of Bovine Cumulus Cells

Author:

Chen Hongyan,Liu Chang,Jiang Hao,Gao Yan,Xu Mingqiang,Wang Jiawei,Liu Siyuan,Fu Yao,Sun Xulei,Xu Jiajun,Zhang Jiabao,Dai Lisheng

Abstract

Background: Bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) are members of the transforming growth factor beta (TGF-β) superfamily. Through autocrine and paracrine mechanisms, these two factors can regulate cell differentiation, proliferation, and other functions in the ovary locally. Furthermore, GDF9 and BMP15 play vital roles in follicular growth, atresia, ovulation, fertilization, reproduction, and maintenance. Numerous studies have demonstrated a synergy between BMP15 and GDF9. Studies in humans and mice have indicated that the synergy between BMP15 and GDF9 is primarily mediated by the bone morphogenetic protein type II receptor (BMPR2). The BMP15/GDF9 heterodimer needs to bind to the BMPR2-ALK4/5/7-ALK6 receptor complex to activate the SMAD2/3 signaling pathway. However, it is not clear which genes mediate and regulate the effects of the BMP15/GDF9 proteins on bovine cumulus cells (CCs). Methods: Our earlier study showed that BMPR2 is a gene that is directly targeted and regulated by miR-375. Therefore, we designed and synthesized an miR-375 mimics/inhibitor and regulated BMPR2 expression in bovine CCs by the overexpression or inhibition of miR-375. After the overexpression or inhibition of miR-375, the apoptosis rate of bovine CCs was measured by flow cytometry; changes in critical gene expression were measured by RT-qPCR and western blot assays; and the proliferation of bovine CCs was measured by CCK-8 assay. Results: In bovine CCs, the overexpression of miR-375 resulted in decreased BMPR2 and ALK7 expression, whereas the inhibition of miR-375 caused increased BMPR2 and ALK7 expression. The overexpression of miR-375 attenuated the proliferation ability and significantly increased the apoptosis rate of bovine CCs, whereas the inhibition of miR-375 did not significantly change the proliferation ability or apoptosis rate. Conclusions: BMPR2, a target of miR-375, is regulated by this molecule, thereby affecting expression of BMP15/GDF9 receptors, and the proliferation and apoptosis of bovine CCs.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3