DNA Double-Strand Break-Related Competitive Endogenous RNA Network of Noncoding RNA in Bovine Cumulus Cells

Author:

Liu Jian-Bo12ORCID,Zhang Jia-Bao1ORCID,Yan Xiang-Min13,Xie Peng-Gui4,Fu Yao1,Fu Xu-Huang1,Sun Xu-Lei1,Han Dong-Xu1,Li Sheng-Peng1,Zheng Yi1,Gao Yan1,Kim Nam-Hyung15,Yuan Bao1ORCID,Jiang Hao1ORCID

Affiliation:

1. Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China

2. Experimental Testing Center, Jilin Agricultural Science and Technology University, Jilin 132101, China

3. Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi 830057, China

4. Yili Vocational and Technical College, Yili 835000, China

5. Department of Animal Science, Chungbuk National University, Cheongju 361-763, Republic of Korea

Abstract

(1) Background: DNA double strand breaks (DSBs) are the most serious form of DNA damage that affects oocyte maturation and the physiological state of follicles and ovaries. Non-coding RNAs (ncRNAs) play a crucial role in DNA damage and repair. This study aims to analyze and establish the network of ncRNAs when DSB occurs and provide new ideas for next research on the mechanism of cumulus DSB. (2) Methods: Bovine cumulus cells (CCs) were treated with bleomycin (BLM) to construct a DSB model. We detected the changes of the cell cycle, cell viability, and apoptosis to determine the effect of DSBs on cell biology, and further evaluated the relationship between the transcriptome and competitive endogenous RNA (ceRNA) network and DSBs. (3) Results: BLM increased γH2AX positivity in CCs, disrupted the G1/S phase, and decreased cell viability. Totals of 848 mRNAs, 75 long noncoding RNAs (lncRNAs), 68 circular RNAs (circRNAs), and 71 microRNAs (miRNAs) in 78 groups of lncRNA–miRNA–mRNA regulatory networks, 275 groups of circRNA–miRNA–mRNA regulatory networks, and five groups of lncRNA/circRNA–miRNA–mRNA co-expression regulatory networks were related to DSBs. Most differentially expressed ncRNAs were annotated to cell cycle, p53, PI3K-AKT, and WNT signaling pathways. (4) Conclusions: The ceRNA network helps to understand the effects of DNA DSBs activation and remission on the biological function of CCs.

Funder

National Natural Science Foundation of China

China Agriculture Research System of MOF and MARA

Research and Demonstration of Integrated Breeding Technology for New Kerqin Beef Cattle

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3