Efficiency of halophilic biofilm producing bacteria towards the degradation of plastic materials at optimum temperature

Author:

Abstract

The consumption of plastic has drastically increased leads to the plastic waste and became the global issue. In the present study, the screening of bacterial isolates from saline areas along with their microbial and biofilm efficiency in degradation of low-density polyethylene (LDPE), high density polyethylene (HDPE) and polypropylene plastic materials were estimated at two different temperatures (30°C and 37°C). The soil samples were collected from salt-affected lands for the isolation and characterization of bacterial isolates. The isolated strains were characterized by 16S rRNA. Two bacterial strains (Bacillus subtilis and Enterobacter cloacae) were identified through sequencing (BioEditor Sequence Builder) among the selected bacterial isolates. Effective degradation rate has been observed through B. subtilis towards LDPE, HDPE and polypropylene as 18%, 25% and 42% respectively through biofilm, while the degradation rate in TSA media were observed as 32%, 30% and 52% respectively, at 37°C. Similarly, E. cloacae degrades the LDPE, HDPE and polypropylene material at 12%, 15% and 30% through biofilm, however 19%, 18% and 38% degradation rate were observed at 37°C respectively. Therefore, both bacterial strains (MK2 B. subtilis and MK29 E. cloacae) isolated from salt-affected area showed potential to degrade the plastic materials at optimum temperature of 37°C.

Publisher

The Science Publishers

Subject

Management of Technology and Innovation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3