Development of a computational tool for the design of seawater reverse osmosis desalination systems powered by photovoltaics for crop irrigation

Author:

Karavas Christos-Spyridon1,Dimitriou Evangelos1,Balafoutis Athanasios T.2,Manolakos Dimitris1,Papadakis George1

Affiliation:

1. Department of Natural Resources & Agricultural Engineering, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece

2. Institute for Bio-Economy & Agro-Technology, CERTH, Dimarchou Georgiadou 118, 38333, Volos, Greece

Abstract

Access to fresh water is a major human right as mankind existence depends on it. The balance between fresh water supply and actual water demand for agricultural purposes (irrigation) relies on the availability of fresh water in the underground aquifers or surface water resources. Water resources are under great pressure due to the high demand for irrigation to sustain crop productivity and cover domestic use as a result of demographic growth. Desalination of sea or brackish water is one of the solutions to provide water for irrigation in remote areas of limited freshwater reserves. In such areas, if desalination is powered by renewable energy sources, then it can become a lot more sustainable. This paper presents the development of an innovative computational tool for the optimal (economically and technically) design of seawater reverse osmosis desalination systems for sustainable water production for crop irrigation. In order to further reduce the cost of water produced, an energy management and control system was also designed and included in the computational tool to ensure the optimal operation of the desalination plant. This system allows the seawater reverse osmosis unit to operate at variable load and determines its optimal operation point using computational intelligence techniques based on fuzzy cognitive maps. According to the results, the implementation of the computational tool for the design of PV-SWRO system presents the lowest cost as compared to the system designed with the conventional methodology.

Publisher

Pivot Science Publication Corp.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3