Applying Graph Theory to Examine the Dynamics of Student Discussions in Small-Group Learning

Author:

Chai Albert1,Le Joshua P.1,Lee Andrew S.2,Lo Stanley M.134

Affiliation:

1. Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093

2. Department of Computer Science, University of California, Los Angeles, Los Angeles, CA 90024

3. Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093

4. Program in Mathematics and Science Education, University of California, San Diego, La Jolla, CA 92093

Abstract

Group work in science, technology, engineering, and mathematics courses is an effective means of improving student outcomes, and many different factors can influence the dynamics of student discussions and, ultimately, the success of collaboration. The substance and dynamics of group discussions are commonly examined using qualitative methods such as discourse analysis. To complement existing work in the literature, we developed a quantitative methodology that uses graph theory to map the progression of talk-turns of discussions within a group. We observed groups of students working with peer facilitators to solve problems in biological sciences, with three iterations of data collection and two major refinements of graph theory calculations. Results include general behaviors based on the turns in which different individuals talk and graph theory parameters to quantify group characteristics. To demonstrate the potential utility of the methodology, we present case studies with distinct patterns: a centralized group in which the peer facilitator behaves like an authority figure, a decentralized group in which most students talk their fair share of turns, and a larger group with subgroups that have implications for equity, diversity, and inclusion. Together, these results demonstrate that our adaptation of graph theory is a viable quantitative methodology to examine group discussions.

Publisher

American Society for Cell Biology (ASCB)

Subject

General Biochemistry, Genetics and Molecular Biology,Education

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3