Face Recognition in Machine Learning: A Framework for Dimensionality Reduction Algorithms

Author:

Kabanda Gabriel

Abstract

A facial recognition system matches a human face from a digital image or a video frame against an authentic repository of faces or Eigenfaces subject to algorithmic performance and detection accuracy. Dimensionality reduction is a type of unsupervised learning for which input is images of higher-dimensional data and these images are represented with a lower-dimensional space. The purpose of the research paper is to evaluate the performance of Dimensionality Reduction algorithms for face recognition using different approaches of Machine Learning (ML). The research uses the Interpretivist Paradigm characterised by a subjectivist epistemology, relativist ontology, naturalist methodology, and a balanced axiology. The quantitative methodology with an experimental research design was used. The results of the experiment show that only selecting the top M eigenfaces reduces the dimensionality of the data, and that too few eigenfaces results in too much information loss, and hence less discrimination between faces. With increasing dimensionality, the amount of training instances needed rises exponentially (i.e., kd). The performance of the Dimensionality Reduction Algorithm is benchmarked against the Clustering, Bayesian, Genetic, Reinforcement Q-Learning and Reinforcement A3C Algorithms. The outcome of the research makes significant value-adding contributions to the future of advances in Big Data Analytics and ML.

Publisher

International Journal of Advanced Networking and Applications - IJANA

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Reinforcement Learning Paradigm for Cybersecurity Education and Training;Oriental journal of computer science and technology;2023-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3