Affiliation:
1. 1Machine Learning, Woxsen School of Business, Woxsen University, Hyderabad, India
2. 2Department of Information and Marketing Sciences, Midlands State University Faculty of Business Sciences, Zimbabwe.
3. 3Faculty of Technology, Zimbabwe Open University in Zimbabwe.
Abstract
Reinforcement learning (RL) is a type of ML, which involves learning from interactions with the environment to accomplish certain long-term objectives connected to the environmental condition. RL takes place when action sequences, observations, and rewards are used as inputs, and is hypothesis-based and goal-oriented. The key asynchronous RL algorithms are Asynchronous one-step Q learning, Asynchronous one-step SARSA, Asynchronous n-step Q-learning and Asynchronous Advantage Actor-Critic (A3C). The paper ascertains the Reinforcement Learning (RL) paradigm for cybersecurity education and training. The research was conducted using a largely positivism research philosophy, which focuses on quantitative approaches of determining the RL paradigm for cybersecurity education and training. The research design was an experiment that focused on implementing the RL Q-Learning and A3C algorithms using Python. The Asynchronous Advantage Actor-Critic (A3C) Algorithm is much faster, simpler, and scores higher on Deep Reinforcement Learning task. The research was descriptive, exploratory and explanatory in nature. A survey was conducted on the cybersecurity education and training as exemplified by Zimbabwean commercial banks. The study population encompassed employees and customers from five commercial banks in Zimbabwe, where the sample size was 370. Deep reinforcement learning (DRL) has been used to address a variety of issues in the Internet of Things. DRL heavily utilizes A3C algorithm with some Q-Learning, and this can be used to fight against intrusions into host computers or networks and fake data in IoT devices.
Publisher
Oriental Scientific Publishing Company
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Reinforcement Learning Approaches in Cyber Security;Advances in Information Security, Privacy, and Ethics;2024-07-26