Author:
Duman Burhan,Süzen Ahmet Ali
Abstract
Deep learning techniques are becoming more and more common in computer vision applications in different fields, such as object recognition, classification, and segmentation. In the study, a classification application was made for flower species detection using the deep learning method of different datasets. The pre-learning MobileNet, DenseNet, Inception, and ResNet models, which are the basis of deep learning, are discussed separately. In experimental studies, models were trained with flower classes with five (flower dataset) and seventeen (Oxford 17) types of flowers and their performances were compared. Performance tests, it is aimed to measure the success of different model optimizers in each data set. For the Oxford-17 data set in experimental studies; With Adam optimizer 93.14% in MobileNetV2 model, 95.59% with SGD optimizer, 92.85% with Adam optimizer in ResNet152v2 model, 88.96% with SGD optimizer, 91.55% with Adam optimizer in InceptionV3 model, 91.55% with SGD optimizer Validation accuracy of 87.66, InceptionResnetV2 model was 86.36% with Adam optimizer, 83.76% with SGD optimizer, 94.16% with Adam optimizer in DenseNet169 model and 90.91% with SGD optimizer. For the dataset named Flower dataset; With Adam optimizer 91.62% in MobileNetV2 model, 80.80% with SGD optimizer, 92.94% with Adam optimizer in ResNet152v2 model, 85.03% with SGD optimizer, 90.71% with Adam optimizer in InceptionV3 model, 82% with SGD optimizer, 62, InceptionResnetV2 model, 88.62% with Adam optimizer, 81.84% with SGD optimizer, 90.03% with Adam optimizer in DenseNet169 model, 82.89% with SGD optimizer. When the results are compared, it is seen that the performance rate of deep learning methods varies in some models depending on the number of classes in the data set, and in most models depending on the optimizer type.
Publisher
International Journal of Advanced Networking and Applications - IJANA
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Polidata: Modelo de inteligencia artificial para la evaluación del diseño de interfaz de usuario en dispositivos móviles;I+Diseño. Revista Científico-Académica Internacional de Innovación, Investigación y Desarrollo en Diseño;2024-01-04
2. Flower Based Plant Classification System;2023 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE);2023-12-04
3. Flower Classification using a Transfer-based Model;2023 2nd International Conference on Applied Artificial Intelligence and Computing (ICAAIC);2023-05-04
4. Flower Classification Utilisizing Tensor Processing Unit Mechanism;2023 2nd International Conference for Innovation in Technology (INOCON);2023-03-03