Antimicrobial activity of aqueous dispersions of silver nanoparticles against pathogens of purulent-inflammatory diseases

Author:

Nechaeva Olga V.ORCID,Shulgina Tatiana A.ORCID,Zubova Ksenia V.ORCID,Glinskaya Elena V.ORCID,Bespalova Natalia V.ORCID,Darin Nikolay I.ORCID,Tichomirova Elena I.ORCID,Afinogenova Anna G.ORCID

Abstract

Currently, metal nanostructures are widely used in medical, microbiological, and veterinary practice. Silver nanoparticles are especially promising as antimicrobial agents, becauseno published data regarding antimicrobial resistance are available. Whiledeveloping preparations based on metal nanoparticles, an important remainingissue is the choice of a stabilizer, introduction of which during the synthesis ensures the preservation of structures at the nanoscale range, and, consequently, relevant main characteristics, including biocidal properties. The object of the study was to investigate silver nanoparticle aqueous dispersions stabilized by natural and synthetic polymeric compounds. Routine strains of Gram-positive and Gram-negative bacteria were used as experimental models: S. aureus 209 P, Escherichia coli ATCC 25922, Proteus mirabilis ATCC 3177 (O-form), Klebsiella pneumoniae ATCC 31488, obtained from the Scientific Centre for Expert Evaluation of Medicinal Products. The antimicrobial activity of diverse variants of silver nanoparticle aqueous dispersions was assessed by serial dilution platingon dense nutrient medium. In this work, we examined no effect of silver nanoparticles without stabilizers, because their absence led to rapid agglomeration of nanostructures and loss of nanoscale characteristics. The highest sensitivity of Gram-positive and Gram-negative bacteria was foundto the action of ansilver nanoparticle aqueous dispersions stabilized by polyazolidinammoniumand modified with iodine hydrate ions. Drug working concentrations ranging from 0.5 to 3% had a bactericidal effect against pathogens of purulent-inflammatory diseases, and the minimum working concentration of 0.125% led to decreased colony-forming units by 2057% for diverse bacterial strains. Silver nanoparticles stabilized with sodium dodecyl sulfate showed high efficiency against the studied test strainsprobably due to the high toxicity of the stabilizer used as was previously established during a comprehensive safety assessment using biotest objects and cell cultures. In this regard, its use as a component of antimicrobial preparations is not preferred. The results of the studies showed that among the variants of silver nanoparticle aqueous dispersions, preparations stabilized with polyvinyl alcohol and polyazolidinammonium modified with iodine hydrate ions are the most promising for use in biomedical practice, because they demonstrate a high level of antibacterial activity against both Gram-positive and Gram-negative bacteria as causative agents of purulent-inflammatory diseases and a low toxicity level. This allows us to recommend them as safe and effective antimicrobial components indisinfectants, as well as antiseptic preparations for prevention and treatment of skin and soft tissue infectious diseases.

Publisher

SPb RAACI

Subject

Infectious Diseases,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3