Bio-Synthesis of zinc oxide nanoparticles and detect its antitumor activity against human skin cancer cell line (A375).
Author:
W E Abid1, I A Gdayea1, A G Oraibi2
Affiliation:
1. Al-Iraqia University, College of Education, Biology Department, Baghdad, Iraq 2. Al-Nahrain University, College of Biotechnology, Baghdad, Iraq
Abstract
In this study, Lepidium sativum seeds were collected from the local markets in Baghdad. Zinc oxide nanoparticles were manufactured from the aqueous extract of Lepidium sativum by adding zinc acetate in a green, safe and environmentally friendly manner. The formation of zinc oxide nanoparticles was inferred by changing the color of the extract from white to yellow, and for Detection of biosynthetic zinc oxide nanoparticles Examinations were conducted to detect these nanoparticles, including diagnosis using atomic force microscopy (AFM), which showed that the size of the nanoparticles (13) nm and the surface roughness (80.51) nm compared with the aqueous extract, which amounted to (23) nm and (57.22) nm respectively. The diagnosis using UV rays showed a peak absorption of nanoparticles at 350 nm compared with the aqueous extract, which reached 248 nm. As for the scanning electron microscope (SEM) examination, the nanoparticles' size ranged between 46.97 - 81.07 nanometers, compared with the aqueous extract, which reached 676 - 591.8 nanometers. To determine the toxic or inhibitory effect against A375 cancer cells and HdFn normal skin cells, MTT cytotoxicity assay was performed for aqueous extract and zinc oxide nanoparticles. The results showed that the aqueous extract was effective against the cancerous cell line A375, as the viability of the cells decreased with the increase in the concentration of the aqueous extract. The IC50 ratio was equal to 140.0 mg/ml for the A375 cancer cells, and the IC50 ratio was equal to 179.9 mg/ml for the normal HdFn cells. As for zinc oxide nanoparticles, the effectiveness was more substantial than that of the aqueous extract, and the vitality of cells was reduced in the cancerous line A375. The normal line HdFn, the higher the concentration of nanoparticles, and the IC50 ratio was equal to 59.46 mg/ml for the cancerous line. The IC50 ratio was equal to 196.9 mg/ml for the normal line.
Keywords: Zinc oxide nanoparticles, Lepidium sativum, antitumor activity or A375 cancer cells.
Publisher
Clinical Biotec
Subject
Infectious Diseases,Applied Microbiology and Biotechnology,Epidemiology,Biotechnology
Reference48 articles.
1. 1 Mahassni, S and Al-Reemi, R. Apoptosis and necrosis of human breast cancer cells by an aqueous garden cress (Lepidium sativum) seeds extract. Journal of Biological Sciences. 2013; 20, 131-139. 2. 2 Dugasani, S.L.; Balijepalli, M.K. and Mallikarjuna Rao, P. Growth inhibition and induction of apoptosis in estrogen receptor-positive and negative human breast carcinoma cells by Adenocalymma alliaceum flowers. Current Trends in Biotechnology and Pharmacy. 2009; 3, 1–12. 3. 3 Gokavi, S.S.; Malleshi, N.G. and Guo, M. Chemical composition of garden cress (Lepidium sativum) seeds and its fractions and use of bran as a functional ingredient. Plant Foods for Human Nutrition (Formerly Qualitas Plantarum), 2005; 59, 105–111. 4. 4 Das, S .,Tyagi, A and Kaur, H. Cancer modulation by glucosinolates: a review Current science, 2000;79, pp. 1665-1671. 5. 5 Divisi, D., Tommaso, S.D., Salvemini, S., Garramone, M. and Crisci, R. Diet and cancer. Acta Biomedica, 2006; 77, pp. 118-123.
|
|