Association of Insulin-like Growth Factor I and Insulin-like Growth Factor–Binding Protein-3 With Intelligence Quotient Among 8- to 9-Year-Old Children in the Avon Longitudinal Study of Parents and Children

Author:

Gunnell David1,Miller Laura L.2,Rogers Imogen2,Holly Jeff M. P.3,

Affiliation:

1. Department of Social Medicine

2. Unit of Paediatric and Perinatal Epidemiology, Department of Community-Based Medicine

3. Division of Surgery, University of Bristol, Bristol, United Kingdom

Abstract

Background. Insulin-like growth factor I (IGF-I) is a hormone that mediates the effects of growth hormone and plays a critical role in somatic growth regulation and organ development. It is hypothesized that it also plays a key role in human brain development. Previous studies have investigated the association of low IGF-I levels attributable to growth hormone receptor deficiency with intelligence but produced mixed results. We are aware of no studies that investigated the association of IGF-I levels with IQ in population samples of normal children. Objectives. To investigate the association of circulating levels of IGF-I and its principle binding protein, IGF-binding protein-3 (IGFBP-3), in childhood with subsequent measures of IQ. Methods. The cohort study was based on data for 547 white singleton boys and girls, members of the Avon Longitudinal Study of Parents and Children, with IGF-I and IGFBP-3 measurements (obtained at a mean age of 8.0 years) and IQ measured with the Wechsler Intelligence Scale for Children (at a mean age of 8.7 years). We also investigated associations with measures of speech and language based on the Wechsler Objective Reading Dimensions test (measured at an age of 7.5 years) and the Wechsler Objective Language Dimensions test (listening comprehension subtest only, measured at an age of 8.7 years). For some children (n = 407), IGF-I (but not IGFBP-3) levels had been measured at ∼5 years of age in a previous study. Linear regression models were used to investigate associations of the IGF-I system with the measures of cognitive function. Results. Three hundred one boys and 246 girls were included in the sample. IGF-I levels (mean ± SD) were 142.6 ± 53.9 ng/mL for boys and 154.4 ± 51.6 ng/mL for girls. IQ scores (mean ± SD) were 106.05 ± 16.6 and 105.27 ± 15.6 for boys and girls, respectively. IGF-I levels were associated positively with intelligence. For every 100 ng/mL increase in IGF-I, IQ increased by 3.18 points (95% confidence interval [CI]: 0.52 to 5.84 points). These positive associations were seen in relation to the verbal component (coefficient: 4.27; 95% CI: 1.62 to 6.92), rather than the performance component (coefficient: 1.06; 95% CI: −1.67 to 3.78), of IQ. There was no evidence that associations with overall IQ differed between boys and girls. In a data set with complete information on confounders (n = 484), controlling for birth weight (adjusted for gestation), breastfeeding, and BMI slightly strengthened the associations of IGF-I levels with IQ. Additionally controlling for maternal education and IGFBP-3 levels attenuated the associations (change in IQ for every 100 ng/mL increase in IGF-I levels: 2.51 points; 95% CI: −0.42 to 5.44 points). The weakening of associations in models controlling for markers of parental socioeconomic position and education could reflect shared influences of parental IGF levels on parents' own educational attainment and their offspring's IGF-I levels. In unadjusted models examining associations of Wechsler Objective Reading Dimensions and Wechsler Objective Language Dimensions test scores with IGF-I levels, there was no strong evidence that performance on either of these tests was associated with circulating IGF-I levels, although positive associations were seen with both measures. Associations between IGF-I levels measured at age 5 and Wechsler Intelligence Scale for Children scores (n = 407) were similar to those for IGF-I levels measured at age 7 to 8. For every 100 ng/mL increase in IGF-I levels at 5 years of age, IQ increased by 2.3 points (95% CI: −0.21 to 4.89 points). Conclusions. This study provides some preliminary evidence that IGF-I is associated with brain development in childhood. Additional longitudinal research is required to clarify the role of IGF-I in neurodevelopment. Because IGF-I levels are modifiable through diet and other environmental exposures, this may be one pathway through which the childhood environment may influence neurodevelopment.

Publisher

American Academy of Pediatrics (AAP)

Subject

Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3