Profiling low-proficiency science students in the Philippines using machine learning

Author:

Bernardo Allan B. I.ORCID,Cordel Macario O.,Calleja Marissa Ortiz,Teves Jude Michael M.,Yap Sashmir A.,Chua Unisse C.

Abstract

AbstractFilipino students’ performance in global assessments of science literacy has always been low, and this was confirmed again in the PISA 2018, where Filipino learners’ average science literacy scores ranked second to last among 78 countries. In this study, machine learning approaches were used to analyze PISA data from the student questionnaire to test models that best identify the poorest-performing Filipino students. The goal was to explore factors that could help identify the students who are vulnerable to very low achievement in science and that could indicate possible targets for reform in science education in the Philippines. The random forest classifier model was found to be the most accurate and more precise, and Shapley Additive Explanations indicated 15 variables that were most important in identifying the low-proficiency science students. The variables related to metacognitive awareness of reading strategies, social experiences in school, aspirations and pride about achievements, and family/home factors, include parents’ characteristics and access to ICT with internet connections. The results of the factors highlight the importance of considering personal and contextual factors beyond the typical instructional and curricular factors that are the foci of science education reform in the Philippines, and some implications for programs and policies for science education reform are suggested.

Publisher

Springer Science and Business Media LLC

Subject

General Economics, Econometrics and Finance,General Psychology,General Social Sciences,General Arts and Humanities,General Business, Management and Accounting

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3