A deep-learning model for predictive archaeology and archaeological community detection

Author:

Resler Abraham,Yeshurun Reuven,Natalio FilipeORCID,Giryes Raja

Abstract

AbstractDeep learning is a powerful tool for exploring large datasets and discovering new patterns. This work presents an account of a metric learning-based deep convolutional neural network (CNN) applied to an archaeological dataset. The proposed account speaks of three stages: training, testing/validating, and community detection. Several thousand artefact images, ranging from the Lower Palaeolithic period (1.4 million years ago) to the Late Islamic period (fourteenth century AD), were used to train the model (i.e., the CNN), to discern artefacts by site and period. After training, it attained a comparable accuracy to archaeologists in various periods. In order to test the model, it was called to identify new query images according to similarities with known (training) images. Validation blinding experiments showed that while archaeologists performed as well as the model within their field of expertise, they fell behind concerning other periods. Lastly, a community detection algorithm based on the confusion matrix data was used to discern affiliations across sites. A case-study on Levantine Natufian artefacts demonstrated the algorithm’s capacity to discern meaningful connections. As such, the model has the potential to reveal yet unknown patterns in archaeological data.

Publisher

Springer Science and Business Media LLC

Subject

General Economics, Econometrics and Finance,General Psychology,General Social Sciences,General Arts and Humanities,General Business, Management and Accounting

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Broadscale deep learning model for archaeological feature detection across the Maya area;Journal of Archaeological Science;2024-09

2. Transitioning from remote sensing archaeology to space archaeology: Towards a paradigm shift;Remote Sensing of Environment;2024-07

3. Automatic ceramic identification using machine learning. Lusitanian amphorae and Faience. Two Portuguese case studies;STAR: Science & Technology of Archaeological Research;2024-05-15

4. SpaceEditing: A Latent Space Editing Interface for Integrating Human Knowledge into Deep Neural Networks;Proceedings of the 29th International Conference on Intelligent User Interfaces;2024-03-18

5. Selective Aggregation of Deep Convolutional Features for Archeological Artifact Retreival;2024 12th International Electrical Engineering Congress (iEECON);2024-03-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3