Performance Analysis of Geometric Properties of Fuel Cell Components

Author:

YAVUZ Beyza Nur1ORCID,KAHRAMAN Hüseyin2ORCID

Affiliation:

1. SAKARYA UYGULAMALI BİLİMLER ÜNİVERSİTESİ

2. SAKARYA UYGULAMALI BİLİMLER ÜNİVERSİTESİ, TEKNOLOJİ FAKÜLTESİ, MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ

Abstract

Due to factors including low emission values, great energy efficiency, and reduced environmental contamination, fuel cells have gained popularity recently. Fuel cells using polymer electrolyte membranes can distribute reactant gases through gas flow channels and remove water that forms during the reaction from the fuel cell. This study looked at how different channel sizes and channel cross-section geometries (rectangular, triangular, and semicircular) affected the distribution of current density, oxygen concentration, velocity, and temperature parameters on the cathode catalyst in the flow channels of a single-channel PEM fuel cell at 0.75 V cell voltage. The model with the highest current density and consequently the best fuel cell performance was determined to be 9 x 10-5 A/cm2 in a channel with a height and breadth of 0.1 cm and A = 1 cm2, according to the data obtained. The flow channel length was assessed at 0.2 in the analysis results for all models because it did not alter with the oxygen concentration distribution. In varied channel designs with the same area, it has been found that the velocity distribution varies inversely with the current density. The maximum velocity value recorded at this location was 33.1 m/s in a semicircular canal with a R of 0.34 mm. It has been discovered that fuel cells from more places operate better as a result.

Publisher

International Journal of Automotive Science and Technology

Subject

Energy Engineering and Power Technology,Transportation,Fuel Technology,Automotive Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3