Modeling and Control of a PEM Fuel Cell Hybrid Energy System Used in a Vehicle with Fuzzy Logic Method

Author:

BOYACIOĞLU Nurettin Mert1ORCID,KOCAKULAK Tolga1ORCID,BATAR Mustafa1ORCID,UYUMAZ Ahmet1ORCID,SOLMAZ Hamit2ORCID

Affiliation:

1. BURDUR MEHMET AKİF ERSOY UNIVERSITY

2. GAZI UNIVERSITY

Abstract

PEM (Proton Exchange Membrane) fuel cells, which are commonly used in vehicles, are critical for sustainable transportation in the future. In this study, it is aimed to en-hance the system efficiency of the PEM fuel cell and provide fuel economy. To achieve this goal, the hybrid energy system with a PEM fuel cell and battery pack is controlled with two different strategies. The first control strategy is designed using Fuzzy Logic (FL), while the other control strategy is designed with the classical on-off method with the 'Relay' block. Power output of the fuel cell is determined depending on the change in the charging state of the battery pack and the power consumed by the electric vehicle in this study. The aim is to provide that the fuel cell operates in a high-efficiency range and can generate enough power when needed. Vehicle and fuel cell modeling were per-formed in Matlab/Simulink environment. NEDC (New European Driving Cycle) and WLTP (Worldwide Harmonized Light Vehicles Test Procedure) driving cycles were considered and fuel cell efficiency and hydrogen consumption were compared at dif-ferent state of charge values of the battery. The analyses were carried out over long dis-tances by repeating the driving cycles. It was observed that fuzzy logic control provid-ed 11.6% less fuel consumption than classic on-off control in NEDC and WLTP driving cycles repeated five times. The values obtained as a result of the study showed that fuzzy logic control is more advantageous to increase the energy efficiency of fuel cells.

Publisher

International Journal of Automotive Science and Technology

Subject

Energy Engineering and Power Technology,Transportation,Fuel Technology,Automotive Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Overview of Fuel Cell-Hybrid Power Sources Vehicle Technology: A Review;International Journal of Automotive Science And Technology;2024-04-18

2. Study of Proton-Exchange Membrane Fuel Cell Degradation and its Counter Strategies: Flooding/drying, Cold Start and Carbon Monoxide Poisoning;International Journal of Automotive Science and Technology;2024-03-31

3. Modified boost converter for renewable energy powered battery charger;International Journal of Automotive Science and Technology;2024-03-31

4. Review of Mechanical, Electrochemical, Electrical, and Hybrid Energy Storage Systems Used for Electric Vehicles;International Journal of Automotive Science and Technology;2024-03-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3