Multivariable Prediction Model for Futile Recanalization Therapies in Patients With Acute Ischemic Stroke

Author:

Meinel Thomas RaphaelORCID,Lerch Christine,Fischer Urs,Beyeler Morin,Mujanovic AdnanORCID,Kurmann Christoph,Siepen BernhardORCID,Scutelnic Adrian,Müller MadlaineORCID,Goeldlin MartinaORCID,Belachew Nebiyat FilateORCID,Dobrocky Tomas,Gralla Jan,Seiffge DavidORCID,Jung Simon,Arnold Marcel,Wiest Roland,Meier Raphael,Kaesmacher Johannes

Abstract

Background and ObjectivesVery poor outcome despite IV thrombolysis (IVT) and mechanical thrombectomy (MT) occurs in approximately 1 of 4 patients with ischemic stroke and is associated with a high logistic and economic burden. We aimed to develop and validate a multivariable prognostic model to identify futile recanalization therapies (FRTs) in patients undergoing those therapies.MethodsPatients from a prospectively collected observational registry of a single academic stroke center treated with MT and/or IVT were included. The data set was split into a training (N = 1,808, 80%) and internal validation (N = 453, 20%) cohort. We used gradient boosted decision tree machine learning models after k-nearest neighbor imputation of 32 variables available at admission to predict FRT defined as modified Rankin scale 5–6 at 3 months. We report feature importance, ability for discrimination, calibration, and decision curve analysis.ResultsA total of 2,261 patients with a median (interquartile range) age of 75 years (64–83 years), 46% female, median NIH Stroke Scale 9 (4–17), 34% IVT alone, 41% MT alone, and 25% bridging were included. Overall, 539 (24%) had FRT, more often in MT alone (34%) as compared with IVT alone (11%). Feature importance identified clinical variables (stroke severity, age, active cancer, prestroke disability), laboratory values (glucose, C-reactive protein, creatinine), imaging biomarkers (white matter hyperintensities), and onset-to-admission time as the most important predictors. The final model was discriminatory for predicting 3-month FRT (area under the curve 0.87, 95% CI 0.87–0.88) and had good calibration (Brier 0.12, 0.11–0.12). Overall performance was moderate (F1-score 0.63 ± 0.004), and decision curve analyses suggested higher mean net benefit at lower thresholds of treatment (up to 0.8).ConclusionsThis FRT prediction model can help inform shared decision making and identify the most relevant features in the emergency setting. Although it might be particularly useful in low resource healthcare settings, incorporation of further multifaceted variables is necessary to further increase the predictive performance.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3