Automated DWI analysis can identify patients within the thrombolysis time window of 4.5 hours

Author:

Wouters Anke,Cheng Bastian,Christensen Soren,Dupont Patrick,Robben David,Norrving Bo,Laage Rico,Thijs Vincent N.,Albers Gregory W.,Thomalla Götz,Lemmens Robin

Abstract

ObjectiveTo develop an automated model based on diffusion-weighted imaging (DWI) to detect patients within 4.5 hours after stroke onset and compare this method to the visual DWI-FLAIR (fluid-attenuated inversion recovery) mismatch.MethodsWe performed a subanalysis of the “DWI-FLAIR mismatch for the identification of patients with acute ischemic stroke within 4.5 hours of symptom onset” (PRE-FLAIR) and the “AX200 for ischemic stroke” (AXIS 2) trials. We developed a prediction model with data from the PRE-FLAIR study by backward logistic regression with the 4.5-hour time window as dependent variable and the following explanatory variables: age and median relative DWI (rDWI) signal intensity, interquartile range (IQR) rDWI signal intensity, and volume of the core. We obtained the accuracy of the model to predict the 4.5-hour time window and validated our findings in an independent cohort from the AXIS 2 trial. We compared the receiver operating characteristic curve to the visual DWI-FLAIR mismatch.ResultsIn the derivation cohort of 118 patients, we retained the IQR rDWI as explanatory variable. A threshold of 0.39 was most optimal in selecting patients within 4.5 hours after stroke onset resulting in a sensitivity of 76% and specificity of 63%. The accuracy was validated in an independent cohort of 200 patients. The predictive value of the area under the curve of 0.72 (95% confidence interval 0.64–0.80) was similar to the visual DWI-FLAIR mismatch (area under the curve = 0.65; 95% confidence interval 0.58–0.72; p for difference = 0.18).ConclusionsAn automated analysis of DWI performs at least as good as the visual DWI-FLAIR mismatch in selecting patients within the 4.5-hour time window.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3