Optic pathway glioma volume predicts retinal axon degeneration in neurofibromatosis type 1

Author:

Avery Robert A.,Mansoor Awais,Idrees Rabia,Trimboli-Heidler Carmelina,Ishikawa Hiroshi,Packer Roger J.,Linguraru Marius George

Abstract

Objective:To determine whether tumor size is associated with retinal nerve fiber layer (RNFL) thickness, a measure of axonal degeneration and an established biomarker of visual impairment in children with optic pathway gliomas (OPGs) secondary to neurofibromatosis type 1 (NF1).Methods:Children with NF1-OPGs involving the optic nerve (extension into the chiasm and tracts permitted) who underwent both volumetric MRI analysis and optical coherence tomography (OCT) within 2 weeks of each other were included. Volumetric measurement of the entire anterior visual pathway (AVP; optic nerve, chiasm, and tract) was performed using high-resolution T1-weighted MRI. OCT measured the average RNFL thickness around the optic nerve. Linear regression models evaluated the relationship between RNFL thickness and AVP dimensions and volume.Results:Thirty-eight participants contributed 55 study eyes. The mean age was 5.78 years. Twenty-two participants (58%) were female. RNFL thickness had a significant negative relationship to total AVP volume and total brain volume (p < 0.05, all comparisons). For every 1 mL increase in AVP volume, RNFL thickness declined by approximately 5 microns. A greater AVP volume of OPGs involving the optic nerve and chiasm, but not the tracts, was independently associated with a lower RNFL thickness (p < 0.05). All participants with an optic chiasm volume >1.3 mL demonstrated axonal damage (i.e., RNFL thickness <80 microns).Conclusions:Greater OPG and AVP volume predicts axonal degeneration, a biomarker of vision loss, in children with NF1-OPGs. MRI volumetric measures may help stratify the risk of visual loss from NF1-OPGs.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3