Large-scale identification of patients with cerebral aneurysms using natural language processing

Author:

Castro Victor M.,Dligach Dmitriy,Finan Sean,Yu Sheng,Can Anil,Abd-El-Barr Muhammad,Gainer Vivian,Shadick Nancy A.,Murphy Shawn,Cai Tianxi,Savova Guergana,Weiss Scott T.,Du Rose

Abstract

Objective:To use natural language processing (NLP) in conjunction with the electronic medical record (EMR) to accurately identify patients with cerebral aneurysms and their matched controls.Methods:ICD-9 and Current Procedural Terminology codes were used to obtain an initial data mart of potential aneurysm patients from the EMR. NLP was then used to train a classification algorithm with .632 bootstrap cross-validation used for correction of overfitting bias. The classification rule was then applied to the full data mart. Additional validation was performed on 300 patients classified as having aneurysms. Controls were obtained by matching age, sex, race, and healthcare use.Results:We identified 55,675 patients of 4.2 million patients with ICD-9 and Current Procedural Terminology codes consistent with cerebral aneurysms. Of those, 16,823 patients had the term aneurysm occur near relevant anatomic terms. After training, a final algorithm consisting of 8 coded and 14 NLP variables was selected, yielding an overall area under the receiver-operating characteristic curve of 0.95. After the final algorithm was applied, 5,589 patients were classified as having aneurysms, and 54,952 controls were matched to those patients. The positive predictive value based on a validation cohort of 300 patients was 0.86.Conclusions:We harnessed the power of the EMR by applying NLP to obtain a large cohort of patients with intracranial aneurysms and their matched controls. Such algorithms can be generalized to other diseases for epidemiologic and genetic studies.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical)

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3