Development and external validation of multimodal postoperative acute kidney injury risk machine learning models

Author:

Karway George K1ORCID,Koyner Jay L2,Caskey John1,Spicer Alexandra B1,Carey Kyle A2,Gilbert Emily R3,Dligach Dmitriy4,Mayampurath Anoop15,Afshar Majid15,Churpek Matthew M15

Affiliation:

1. Department of Medicine, University of Wisconsin-Madison , Madison, WI 53792, United States

2. Section of Nephrology, Department of Medicine, University of Chicago , Chicago, IL 60637, United States

3. Department of Medicine, Loyola University Chicago , Chicago, IL 60153, United States

4. Department of Computer Science, Loyola University Chicago , Chicago, IL 60626, United States

5. Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison , Madison, WI 53726, United States

Abstract

Abstract Objectives To develop and externally validate machine learning models using structured and unstructured electronic health record data to predict postoperative acute kidney injury (AKI) across inpatient settings. Materials and Methods Data for adult postoperative admissions to the Loyola University Medical Center (2009-2017) were used for model development and admissions to the University of Wisconsin-Madison (2009-2020) were used for validation. Structured features included demographics, vital signs, laboratory results, and nurse-documented scores. Unstructured text from clinical notes were converted into concept unique identifiers (CUIs) using the clinical Text Analysis and Knowledge Extraction System. The primary outcome was the development of Kidney Disease Improvement Global Outcomes stage 2 AKI within 7 days after leaving the operating room. We derived unimodal extreme gradient boosting machines (XGBoost) and elastic net logistic regression (GLMNET) models using structured-only data and multimodal models combining structured data with CUI features. Model comparison was performed using the receiver operating characteristic curve (AUROC), with Delong’s test for statistical differences. Results The study cohort included 138 389 adult patient admissions (mean [SD] age 58 [16] years; 11 506 [8%] African-American; and 70 826 [51%] female) across the 2 sites. Of those, 2959 (2.1%) developed stage 2 AKI or higher. Across all data types, XGBoost outperformed GLMNET (mean AUROC 0.81 [95% confidence interval (CI), 0.80-0.82] vs 0.78 [95% CI, 0.77-0.79]). The multimodal XGBoost model incorporating CUIs parameterized as term frequency-inverse document frequency (TF-IDF) showed the highest discrimination performance (AUROC 0.82 [95% CI, 0.81-0.83]) over unimodal models (AUROC 0.79 [95% CI, 0.78-0.80]). Discussion A multimodality approach with structured data and TF-IDF weighting of CUIs increased model performance over structured data-only models. Conclusion These findings highlight the predictive power of CUIs when merged with structured data for clinical prediction models, which may improve the detection of postoperative AKI.

Funder

NIH

NIDDK

National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3