Migrating Focal Seizures and Myoclonic Status in ARV1-Related Encephalopathy

Author:

Darra Francesca,Lo Barco Tommaso,Opri Roberta,Parrini Elena,Bianchini Claudia,Fiorini Elena,Simonati Alessandro,Dalla Bernardina Bernardo,Cantalupo Gaetano,Guerrini Renzo

Abstract

ObjectiveTo report longitudinal clinical, EEG, and MRI findings in 2 sisters carrying compound heterozygous ARV1 mutations and exhibiting a peculiar form of developmental and epileptic encephalopathy (DEE). Neuropathologic features are also described in one of the sisters.MethodsClinical course description, video-EEG polygraphic recordings, brain MRI, skin and muscle biopsies, whole-exome sequencing (WES), and brain neuropathology.ResultsSince their first months of life, both girls exhibited severe axial hypotonia, visual inattention, dyskinetic movements, severe developmental delay, and slow background EEG activity. Intractable nonmotor seizures started in both at the eighth month of life, exhibiting the electroclinical characteristics of epilepsy of infancy with migrating focal seizures (EIMFS). In the second year of life, continuous epileptiform EEG activity of extremely high amplitude appeared in association with myoclonic status, leading to severely impaired alertness and responsiveness. Repeated brain MRI revealed progressive atrophic changes and severe hypomyelination. WES identified a compound heterozygous in the ARV1 gene [(p.Ser122Glnfs*7) and (p.Trp163*)] in one patient and was subsequently confirmed in the other. Both sisters died prematurely during respiratory infections. Postmortem neuropathologic examination of the brain, performed in one, revealed atrophic brain changes, mainly involving the cerebellum.ConclusionsThis report confirms that biallelic ARV1 mutations cause a severe form of DEE and adds epilepsy with migrating focal seizures and myoclonic status to the spectrum of epilepsy phenotypes. Considering the potential role of human ARV1 in glycosylphosphatidylinositol (GPI) anchor biosynthesis, this severe syndrome can be assigned to the group of inherited GPI deficiency disorders, with which it shares remarkably similar clinical and neuroimaging features. ARV1 should be considered in the genetic screening of individuals with EIMFS.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Genetics(clinical),Clinical Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3