Validation of the Alzheimer Disease Dementia Conversion-Related Pattern as an ATN Biomarker of Neurodegeneration

Author:

Blazhenets GannaORCID,Frings LarsORCID,Ma Yilong,Sörensen Arnd,Eidelberg David,Wiltfang Jens,Meyer Philipp T.,

Abstract

ObjectiveTo determine whether the Alzheimer disease (AD) dementia conversion-related pattern (ADCRP) on [18F]FDG PET can serve as a valid predictor for the development of AD dementia, the individual expression of the ADCRP (subject score) and its prognostic value were examined in patients with mild cognitive impairment (MCI) and biologically defined AD.MethodsA total of 269 patients with available [18F]FDG PET, [18F]AV-45 PET, phosphorylated and total tau in CSF, and neurofilament light chain in plasma were included. Following the AT(N) classification scheme, where AD is defined biologically by in vivo biomarkers of β-amyloid (Aβ) deposition (“A”) and pathologic tau (“T”), patients were categorized to the A−T−, A+T−, A+T+ (AD), and A−T+ groups.ResultsThe mean subject score of the ADCRP was significantly higher in the A+T+ group compared to each of the other group (all p < 0.05) but was similar among the latter (all p > 0.1). Within the A+T+ group, the subject score of ADCRP was a significant predictor of conversion to dementia (hazard ratio, 2.02 per z score increase; p < 0.001), with higher predictive value than of alternative biomarkers of neurodegeneration (total tau and neurofilament light chain). Stratification of A+T+ patients by the subject score of ADCRP yielded well-separated groups of high, medium, and low conversion risks.ConclusionsThe ADCRP is a valuable biomarker of neurodegeneration in patients with MCI and biologically defined AD. It shows great potential for stratifying the risk and estimating the time to conversion to dementia in patients with MCI and underlying AD (A+T+).Classification of EvidenceThis study provides Class I evidence that [18F]FDG PET predicts the development of AD dementia in individuals with MCI and underlying AD as defined by the AT(N) framework.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3