Estimating uncertainty in read‐out patterns: Application to controls‐based denoising and voxel‐based morphometry patterns in neurodegenerative and neuropsychiatric diseases

Author:

Blum Dominik1ORCID,Hepp Tobias23,Belov Valdimir4,Goya‐Maldonado Roberto4ORCID,la Fougère Christian1,Reimold Matthias1

Affiliation:

1. Department of Nuclear Medicine and Clinical Molecular Imaging University Hospital Tübingen Tübingen Germany

2. Department of Radiology University Hospital Tübingen Tübingen Germany

3. Max Planck Institute for Intelligent Systems Tübingen Germany

4. Laboratory of Systems Neuroscience and Imaging in Psychiatry University Medical Center Göttingen Göttingen Germany

Abstract

AbstractQuantifying pathology‐related patterns in patient data with pattern expression score (PES) is a standard approach in medical image analysis. In order to estimate the PES error, we here propose to express the uncertainty contained in read‐out patterns in terms of the expected squared Euclidean distance between the read‐out pattern and the unknown “true” pattern (squared standard error of the read‐out pattern, SE2). Using SE2, we predicted and optimized the net benefit (NBe) of the recently suggested method controls‐based denoising (CODE) by weighting patterns of nonpathological variance (NPV). Multi‐center MRI (1192 patients with various neurodegenerative and neuropsychiatric diseases, 1832 healthy controls) were analysed with voxel‐based morphometry. For each pathology, accounting for SE2, NBe correctly predicted classification improvement and allowed to optimize NPV pattern weights. Using these weights, CODE improved classification performances in all but one analyses, for example, for prediction of conversion to Alzheimer's disease (AUC 0.81 vs. 0.75, p = .01), diagnosis of autism (AUC 0.66 vs. 0.60, p < .001), and of major depressive disorder (AUC 0.62 vs. 0.50, p = .03). We conclude that the degree of uncertainty in a read‐out pattern should generally be reported in PES‐based analyses and suggest using weighted CODE as a complement to PES‐based analyses.

Publisher

Wiley

Subject

Neurology (clinical),Neurology,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3