Erythrocyte omega-3 index, ambient fine particle exposure, and brain aging

Author:

Chen Cheng,Xun PengchengORCID,Kaufman Joel D.ORCID,Hayden Kathleen M.,Espeland Mark A.,Whitsel Eric A.,Serre Marc L.,Vizuete William,Orchard Tonya,Harris William S.,Wang Xinhui,Chui Helena C.,Chen Jiu-Chiuan,He Ka

Abstract

ObjectiveTo examine whether long-chain omega-3 polyunsaturated fatty acid (LCn3PUFA) levels modify the potential neurotoxic effects of particle matter with diameters <2.5 µm (PM2.5) exposure on normal-appearing brain volumes among dementia-free elderly women.MethodsA total of 1,315 women (age 65–80 years) free of dementia were enrolled in an observational study between 1996 and 1999 and underwent structural brain MRI in 2005 to 2006. According to prospectively collected and geocoded participant addresses, we used a spatiotemporal model to estimate the 3-year average PM2.5 exposure before the MRI. We examined the joint associations of baseline LCn3PUFAs in red blood cells (RBCs) and PM2.5 exposure with brain volumes in generalized linear models.ResultsAfter adjustment for potential confounders, participants with higher levels of RBC LCn3PUFA had significantly greater volumes of white matter and hippocampus. For each interquartile increment (2.02%) in omega-3 index, the average volume was 5.03 cm3 (p < 0.01) greater in the white matter and 0.08 cm3 (p = 0.03) greater in the hippocampus. The associations with RBC docosahexaenoic acid and eicosapentaenoic acid levels were similar. Higher LCn3PUFA attenuated the inverse associations between PM2.5 exposure and white matter volumes in the total brain and multimodal association areas (frontal, parietal, and temporal; all p for interaction <0.05), while the associations with other brain regions were not modified. Consistent results were found for dietary intakes of LCn3PUFAs and nonfried fish.ConclusionsFindings from this prospective cohort study among elderly women suggest that the benefits of LCn3PUFAs on brain aging may include the protection against potential adverse effects of air pollution on white matter volumes.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical)

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3