Clinical, genetic, and pathologic characterization of FKRP Mexican founder mutation c.1387A>G

Author:

Lee Angela J.,Jones Karra A.,Butterfield Russell J.,Cox Mary O.,Konersman Chamindra G.,Grosmann Carla,Abdenur Jose E.,Boyer Monica,Beson Brent,Wang Ching,Dowling James J.,Gibbons Melissa A.,Ballard Alison,Janas Joanne S.,Leshner Robert T.,Donkervoort Sandra,Bönnemann Carsten G.,Malicki Denise M.,Weiss Robert B.,Moore Steven A.,Mathews Katherine D.

Abstract

ObjectiveTo characterize the clinical phenotype, genetic origin, and muscle pathology of patients with the FKRP c.1387A>G mutation.MethodsStandardized clinical data were collected for all patients known to the authors with c.1387A>G mutations in FKRP. Muscle biopsies were reviewed and used for histopathology, immunostaining, Western blotting, and DNA extraction. Genetic analysis was performed on extracted DNA.ResultsWe report the clinical phenotypes of 6 patients homozygous for the c.1387A>G mutation in FKRP. Onset of symptoms was <2 years, and 5 of the 6 patients never learned to walk. Brain MRIs were normal. Cognition was normal to mildly impaired. Microarray analysis of 5 homozygous FKRP c.1387A>G patients revealed a 500-kb region of shared homozygosity at 19q13.32, including FKRP. All 4 muscle biopsies available for review showed end-stage dystrophic pathology, near absence of glycosylated α-dystroglycan (α-DG) by immunofluorescence, and reduced molecular weight of α-DG compared with controls and patients with homozygous FKRP c.826C>A limb-girdle muscular dystrophy.ConclusionsThe clinical features and muscle pathology in these newly reported patients homozygous for FKRP c.1387A>G confirm that this mutation causes congenital muscular dystrophy. The clinical severity might be explained by the greater reduction in α-DG glycosylation compared with that seen with the c.826C>A mutation. The shared region of homozygosity at 19q13.32 indicates that FKRP c.1387A>G is a founder mutation with an estimated age of 60 generations (∼1,200–1,500 years).

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Genetics (clinical),Neurology (clinical)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3